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Abstract. ANOSIM, PERMANOVA, and the Mantel test are all resemblance-based
permutation methods widely used in ecology. Here, we report the results of the first simulation
study, to our knowledge, specifically designed to examine the effects of heterogeneity of
multivariate dispersions on the rejection rates of these tests and on a classical MANOVA test
(Pillai’s trace). Increasing differences in dispersion among groups were simulated under
scenarios of changing sample sizes, correlation structures, error distributions, numbers of
variables, and numbers of groups for balanced and unbalanced one-way designs. The power of
these tests to detect environmental impacts or natural large-scale biogeographic gradients was
also compared empirically under simulations based on parameters derived from real ecological
data sets.

Overall, ANOSIM and the Mantel test were very sensitive to heterogeneity in dispersions,
with ANOSIM generally being more sensitive than the Mantel test. In contrast,
PERMANOVA and Pillai’s trace were largely unaffected by heterogeneity for balanced
designs. PERMANOVA was also unaffected by differences in correlation structure, unlike
Pillai’s trace. For unbalanced designs, however, all of the tests were (1) too liberal when the
smaller group had greater dispersion and (2) overly conservative when the larger group had
greater dispersion, especially ANOSIM and the Mantel test. For simulations based on real
ecological data sets, PERMANOVA was generally, but not always, more powerful than the
others to detect changes in community structure, and the Mantel test was usually more
powerful than ANOSIM. Both the error distributions and the resemblance measure affected
results concerning power.

Differences in the underlying construction of these test statistics result in important
differences in the nature of the null hypothesis they are testing, their sensitivity to
heterogeneity, and their power to detect important changes in ecological communities. For
balanced designs, PERMANOVA and PERMDISP can be used to rigorously identify location
vs. dispersion effects, respectively, in the space of the chosen resemblance measure. ANOSIM
and the Mantel test can be used as more “omnibus” tests, being sensitive to differences in
location, dispersion or correlation structure among groups. Unfortunately, none of the tests
(PERMANOVA, Mantel, or ANOSIM) behaved reliably for unbalanced designs in the face of
heterogeneity.

Key words:  ANOSIM,; Bray-Curtis; community composition; dispersion, dissimilarities; homogeneity;
multivariate analysis; null hypothesis, PERMANOV A; PERMDISP, permutation test, species abundances.

INTRODUCTION

The validity of classical multivariate analysis of
variance (MANOVA) relies on certain assumptions,
including the independence of the sample units (e.g., row
vectors), the multivariate normality of errors, and the
homogeneity of variance-covariance matrices among
the groups (e.g., Mardia et al. 1979, Seber 1984, Rencher
1998). The classical MANOVA test statistics (i.e., Wilks’
lambda, the Hotelling-Lawley trace, Pillai’s trace, and
Roy’s largest root criterion) are designed specifically to
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test the null hypothesis (Hj) of no differences in the
multivariate centroids (the central location, or vector of
mean parameters for all variables) among the groups.
These tests also require the total number of sample units
(N, say) to be large relative to the number of variables
(p, say), and cannot be calculated when p > N.

In many biological, ecological, and environmental
data sets, the assumptions of MANOVA are not likely
to be met (e.g., Clarke 1993, McArdle and Anderson
2001). A number of more robust methods to compare
groups of multivariate sample units have been proposed
and several of these have now become very widely used
in ecology. They include the analysis of similarities
(ANOSIM; Clarke 1993, with >3700 citations according
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to ISI’s Web of Science), permutational multivariate
analysis of variance (PERMANOVA; Anderson 2001,
with >1600 citations; see also Pillar and Orloci 1996,
Gower and Krzanowski 1999, Legendre and Anderson
1999, McArdle and Anderson 2001), and the Mantel test
(Mantel 1967, with >5200 citations; see also Mantel and
Valand 1970). Although the Mantel test is usually used
to compare two distance matrices, it can be used to
compare groups of samples by coding a contrast of
between- vs. within-group distances in a model matrix
(Appendix A). The particular form of this test that will
be examined in what follows is where the specific values
chosen for the model matrix yield an ANOSIM test on
the basis of the dissimilarities themselves, rather than on
their ranks (see Appendix A).

These methods all construct ANOVA-like test statis-
tics from a matrix of resemblances (distances, dissimi-
larities, or similarities) calculated among the sample
units, and obtain P values using random permutations
of observations among the groups, thereby assuming
only exchangeability for the one-way case. Any resem-
blance measure may be chosen as the basis of the
analysis (optionally after first transforming the data,
e.g., Clarke and Green 1988, Clarke 1993) to reflect
whatever qualities among the samples may be of greatest
interest (e.g., Legendre and Legendre 1998, Clarke et al.
2006, Anderson et al. 2011).

The test statistics inherent in resemblance-based
permutation tests were modeled to varying degrees on
Fisher’s Fstatistic used in univariate ANOVA (Snedecor
1934), specifically by contrasting some function of the
between-group vs. the within-group resemblances (e.g.,
Mantel), their squares (e.g., PERMANOVA), or their
ranks (e.g., ANOSIM). They are therefore generally
used and interpreted by practitioners for detection of
differences in the locations (centroids) of multivariate
groups. What is not widely appreciated, however, is that
they are actually testing different null hypotheses.

The null hypothesis tested by PERMANOVA is that,
under the assumption of exchangeability of the sample
units among the groups, Hy,: “the centroids of the
groups, as defined in the space of the chosen resem-
blance measure, are equivalent for all groups.” Thus, if
H, were true, any observed differences among the
centroids in a given set of data will be similar in size
to what would be obtained under random allocation of
individual sample units to the groups (i.e., under
permutation). In contrast, the null hypothesis for the
Mantel test, as originally described, is: Hy: “there is no
relationship between the inter-point distances in one
distance matrix and the inter-point distances in a second
distance matrix.” However, when the second distance
matrix contains codes that contrast between- vs. within-
group distances (see Appendix A for details), then the
null hypothesis (once again, under the assumption of
exchangeability) becomes Hj: “the average of the within-
group distances is greater than or equal to the average of
the between-group distances.” This is deliberately
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phrased as a one-tailed test here; the alternative
hypothesis being that the within-group distances are
smaller, on average, than the between-group distances.
The null hypothesis for the ANOSIM test is closely
related to this, namely Hy: “the average of the ranks of
within-group distances is greater than or equal to the
average of the ranks of between-group distances,” where
a single ranking has been done across all inter-point
distances in the distance matrix and the smallest distance
(highest similarity) has a rank value of 1. For both the
ANOSIM test and the Mantel test (in this form), the
essence of what is being tested is the degree to which
there is greater clumping (smaller distances) among
samples within the same group compared to that
observed among samples in different groups. The null
hypotheses for ANOSIM or the Mantel test are
therefore more general (less specific) than the null
hypothesis tested by PERMANOVA. Thus, a significant
result using ANOSIM or the Mantel test could indicate
that the groups differ in their location, their dispersion,
or some other distributional quality, such as their degree
of skewness, non-sphericity (correlation structure), or
some combination of these things, any of which can
make the distribution of samples within a given group
distinguishable from the rest.

The relative sensitivity of resemblance-based permu-
tation tests to detect heterogeneity of multivariate
dispersions is unknown. One might expect that non-
parametric tests, especially those based on ranks, would
be more robust than their classical counterparts to
heterogeneity. In univariate analysis, however, a per-
mutation test for differences in means using the ¢
statistic is not necessarily more robust to heterogeneity
of variances among the groups than the classical
normal-theory # test (Boik 1987, Romano 1990, Hayes
1996, Manly and Francis 2002).

The comparative robustness of the classical
MANOVA test statistics to heterogeneity has been
studied to some extent and, generally, Pillai’s trace was
found to be the most robust (Olson 1974, 1979, Stevens
1979). More recently, Torres et al. (2010) measured the
size and power of PERMANOVA and a related test
described by Pillar and Orloci (1996) by simulating
multivariate normal, lognormal, and uniform data in
one-way and two-way crossed ANOVA designs. Their
main purpose, however, was to investigate the properties
of different permutation methods for multivariate data.
Thus, the empirical behavior of resemblance-based
permutation tests in the presence of heterogeneity of
multivariate dispersions among groups, either by com-
parison to the classical MANOVA tests or to one
another, remains virtually unexplored.

Here, we describe a simulation study done to
investigate the empirical rates of rejection of Hy (at an
a priori chosen significance level of o = 0.05) for
ANOSIM, the Mantel test, PERMANOVA, and (wher-
ever possible) classical MANOVA (Pillai’s trace; see
Pillai 1955), with a special focus on the effects of
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heterogeneity of multivariate dispersions. More com-
plete descriptions of the test statistics examined here and
their relationships with several other related methods,
such as multi-response permutation procedures (MRPP;
Mielke et al. 1981), are given in detail in Appendix A.
Comparisons were also done with PERMDISP, a
resemblance-based permutation test focused strictly on
the null hypothesis of homogeneity of multivariate
dispersions (Anderson 2006). Even if centroids differ,
PERMDISP explicitly tests only H,: “the average
within-group dispersion (measured by the average
distance to group centroid and as defined in the space
of the chosen resemblance measure), is equivalent
among the groups.”

Increasing differences in dispersion among groups
were simulated under scenarios of changing sample
sizes, correlation structures, error distributions, numbers
of variables, and numbers of groups for balanced and
unbalanced one-way designs. The power of these tests to
detect real potential changes due to environmental
impact or natural large-scale biogeographic gradients
was also compared empirically under simulations based
on parameters derived from real ecological data sets.

METHODS
Rationale

We began with simple scenarios (multivariate normal
data with small numbers of variables and analyses based
on Euclidean distances) and progressed to more complex
and realistic scenarios (data simulated from truncated
multivariate lognormal or Poisson or negative binomial
distributions based on parameters for hundreds of
species estimated from real data sets). Initially, simula-
tion scenarios were done for normal and non-normal
data in Euclidean space (i.e., based on the Euclidean
distance measure and without any transformation) so
that known and deliberately set differences in the
parameters of the original variables would correspond
directly to known changes in the relative location,
dispersion, and correlation structure of points in the
multivariate space. These are essential first steps to
understanding the behavior of the test statistics with
respect to null hypotheses. Unfortunately, ecological
resemblance measures, such as Bray-Curtis or Jaccard,
do not maintain location and dispersion effects that may
be present in the Euclidean space of the original
variables (see Appendix B and Warton et al. 2012). It
was also particularly important to simulate scenarios
initially where the multivariate dispersions could be
altered independently of the centroids (e.g., using
multivariate normal distributions, or negative binomial
distributions altering only the dispersion parameter).

Ultimately, however, interest lies in comparing the
methods under more realistic scenarios; e.g., with non-
normal high-dimensional count data, and with tests
based on measures that focus on community composi-
tion, such as Bray-Curtis, chi-square, or Jaccard. The
list of potential alternative hypotheses regarding changes
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in community structure that might be constructed to
examine power is too vast to be undertaken exhaustively
here. However, a suite of simulations were done to
provide meaningful comparisons for certain ecological
questions of very broad potential interest: namely, the
effects of pollution surrounding an oilfield (Gray et al.
1990) and large-scale latitudinal changes in beta
diversity (Ellingsen and Gray 2002).

Simulation methods

We used purpose-built code written in R for this study
(R Development Core Team 2012). All code is provided
in Supplement 1 and was checked with independent
software (e.g., PRIMER v6; Clarke and Gorley 2006,
Anderson et al. 2008). Simulations were designed to
investigate and highlight the essential empirical charac-
teristics of the tests and to compare and contrast their
sensitivity to heterogeneity. Each set of scenarios defined
in the sections below is designated as “Sim1”, “Sim2”,
and so on, to identify their corresponding R code files in
Supplement 1. A detailed outline and relevant param-
eters for simulation scenarios are provided in Table 1,
for reference. For each individual scenario within each
set, 1000 simulated data sets were generated under
known parameters. For each simulated data set, the test
statistic and associated P value was calculated for each
of ANOSIM, Mantel, and PERMANOVA using 999
random permutations on the basis of Euclidean
distances. For Pillai’s trace, a P value was calculated
using the classical F distribution approximation (Ap-
pendix A). The PERMDISP test for homogeneity of
dispersions (Anderson 2006) was also done for each
simulated data set, using distances to centroids, and with
P values obtained using 999 permutations of residuals
under a reduced model. The significance level to reject
the null hypothesis was set a priori at oo = 0.05 in all
cases, and the rejection rate of each test was calculated
as the proportion of P values (out of the 1000 simulated
data sets) that were less than or equal to o. Note that we
deliberately do not refer to rejection rates as “Type |
error” for any of these scenarios, because the tests being
examined here do differ fundamentally in their under-
lying null hypothesis. The aim here was to uncover the
relative sensitivity of the tests to specific known
distributional differences between groups. Standard
errors on each empirical rejection rate were calculated
under the binomial distribution, using the function
prop.test in R.

Simulation scenarios

Balanced designs ( Siml).—The first set of simulations
examined the effect of increasing sample size and
increasing degree of heterogeneity for balanced designs
in Euclidean space for either multivariate normal or
Poisson/negative binomial data. Multivariate normal
(MVN) data for g = 2 groups and p = 2 independent
variables were generated where the means in both
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TasLi 1. Detailed outline of simulation scenarios conducted for the study, indicated as Sim1-Sim4.

No. No.
variables, groups, Variances/correlation
Name Distr. ¥4 g Sample sizes structure
Balanced designs, n; = n,, uncorrelated data (p; = p, = 0)
Simla—1d Norm {2,3,5,10} 2 ny=n = {4,6,9,12, 18, 24} m={1,2,5,10}
Simle Pois/NB 2 2 n=n,=12 0, =0, 60, =1{0,0.1,04,0.9}
Simlf-h  Pois/NB {3, 5,10} 2 n=n, =12 6, =0, 60, =1{0,0.1}
Unbalanced designs, n, > n;, uncorrelated data (p; = p, = 0)
Sim2a-d  Norm {2,3,5,10} 2 ny = {3,4,6,8,12,16}, n, = 2; m={l1,2,5,10};
m =1{3,4,5,6,9,12}, n, = 3; m=1{0.5,02,0.1}
n =1{3,4,56,8},n=>5
Sim2e Pois/NB 2 2 n=8mnm=16mn =2 0, = {0.1,0.4,0.9}, 6, = 0;
0, =0, 60, =1{0,0.1,04,0.9}
Sim2f-h  Pois/NB {3, 5,10} 2 n=8mn=16mn=2 0,=0.1,0,=0;0,=0,0,=0.1
Changes in correlation structure, constant variances (m = 1)
Sim3 Norm 2 2 no=n, = {4 6,9, 12, 18, 24}; p1 =0, po ={0,0.6,0.9};

m = {3,4,6,8, 12, 16}, n, = 2;
m=13.4.5609, 12}, n, = 3;

p1 = p2 = {0.6,0.9};
pr:pa = {—0.6:0.6, —0.9:0.9}

n ={3,4,568}, n =735

Changes in numbers of groups, constant total sample size (V)

Simda Norm 2 2 n; = 30, N = 60
Sim4b Norm 2 4 n; =15, N = 60
Sim4c Norm 2 6 n; = 10, N = 60
Sim4d Norm 2 10 n; =6, N =60

Changes in numbers of groups, constant group sample size (1;)

Sim4e Norm 2 2 n=6,N=12
Sim4f Norm 2 4 n;=6, N =24
Simég Norm 2 6 n; =6, N =36
Simdd Norm 2 10 n; =6, N =60

o2 = o3 = 12;
O =1,05=5
07,34 = 1 all small;

G%_z__z =1, 04 = 5, one large;
512 =1, 034 = 5, half large;

1,635, = 5, one small
1, all small;

GI s =1, 66—5 one large;

67 5 =1, 67 ¢ = 5, half large;
o7 =1, 03_¢ = 5, one small
o2 0= 1, all small;

— 2 o
o7 o =1, 6, = 5, one large;

O1 7= 1 Ugfm =35

o3, = 1,02, =5, half large;
G%—,% =1, G3710 =5

62 =1, 65_,, = 5, one small

as in Simda
as in Sim4b
as in Sim4c
as in Sim4d

Notes: For each scenario, 1000 data sets were simulated, and P values for ANOSIM, Mantel, and PERMANOVA were obtained
using 999 permutations on the basis of Euclidean distances. Distributions (Distr.) were Normal (Norm), or Poisson/Negative
Binomial (Pois/NB), as specified. Variables are: p, the number of variables; g, the number of groups; N the total number of
samples, while, for the ith individual group, 7; is the the sample size; p;, the correlation between variables; 67, the variance; and 0,
the dispersion parameter for all variables in group i. For two groups, m equals the ratio of two variances (02/0 ), and n, equals the

ratio of sample sizes (np/n;).

groups had a common value of p = 10 and the
covariance matrix in both groups was initially

10
n-n-y ]

Heterogeneity was then introduced and gradually
increased by introducing scalar multipliers, m; for X;
and m, for X,. For clarity in what follows, we define the
ratio of these multipliers simply as m = my/m,. Thus, as
%, and X, are identity matrices, m is simply the ratio of
the variances for any variable in group 2 vs. group 1
(i.e., 53/07). A set of simulations was done for each of m

={1,2,5,10}. The above set was repeated for each of
several sample sizes (gradually increasing) in a balanced
design for two groups: n; =n, =14, 6,9, 12, 18, 24}. To
investigate the effect of increasing numbers of variables,
all of the above was done for p = {2, 3,5, 10}, while
always maintaining a value of p = 10 for all variables,
covariance values of 0 (thus, independence) among
variables, and the identity matrix (variances = 1) for X,
while increasing n and m, as described.

Simulations were also done on the basis of the Poisson
and negative binomial (NB) distributions. For these
discrete distributions, often used to model count data,
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the variance is known to increase with the mean. More
particularly, for the NB distribution having mean p, the
variance is 6% = p + 0u® , where 0 is the aggregation
parameter (also referred to as the dispersion parameter).
The NB distribution reduces to the Poisson distribution
when 6 = 0 and o® = p. We simulated non-normal
negative binomial count data for p={2, 3, 5, 10}, and p
= 10 and 6; = 0 for all variables, while gradually
introducing heterogeneity in group 2 by changing the
value of 6, for all variables in that group to 0, =
{0,0.1,0.4,0.9}. McArdle and Anderson (2004) have
discussed how the degree of aggregation (as measured by
0) can shift in different habitats for organisms of the
same species in natural systems.

Unbalanced designs (Sim2).—The second set of
simulations was designed to examine the effects of
heterogeneity for unbalanced designs. All of the
scenarios and parameters remained as described above
for Siml, except for the sample sizes, which could differ
in the two groups. We wished to distinguish the effect of
a simple increase in the total sample size (N =n; + n,) vs.
a change in the degree of imbalance in the sample sizes
between groups. The sample sizes were altered such that
ny > ny and the ratio was my/n; = {1,2,3,5}. We
generated data, in each case, where the group with the
larger sample size (1) also had the larger variance,
putting m = {1, 2, 5, 10} as in Siml. We also simulated
data where the group with the smaller sample size (1)
had the larger variance, so putting m = {0.5, 0.2, 0.1}.

Correlation structure (Sim3).—The third set of
simulations was designed to study the effects of
differences in correlation structure among the variables
across different groups. Here, the variances were kept
constant across groups (equal to one for all variables),
but the degree of difference in the correlation between
variables was altered. First, we considered scenarios of
two groups where the first group had no correlation
between the variables (p; = 0 for all pairs of variables),
so was spherical in shape, while the second group had an
increasing degree of correlation among all variables,
namely, p, = {0,0.6,0.9}. We then considered the
situation where the two groups had a common nonzero
correlation structure (i.e., p; = p, = {0.6, 0.9}), but then
increased the differences in the degree and direction of
correlation between the two groups, that is, the
correlations between the variables for group 1 vs. group
2, respectively, were pi:p, = {0:0,—0.6:0.6,—0.9:0.9}.
These were done as for Sim1 and Sim2 for balanced and
unbalanced designs and p =2 variables.

Numbers of groups (Sim4).—The fourth set of
simulations examined the effect of heterogeneity in the
context of increasing numbers of a priori groups (as
Siml1, Sim2, and Sim3 treated only the case of g = 2).
Two different kinds of situations of increasing group
numbers were considered. First, a fixed total number of
samples (N) can be partitioned into more and more
groups (increasing g), but with smaller and smaller
numbers of samples per group (n). For this, we set N =
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60 and for g = {2,4,6,10}; this yielded n =
{30, 15, 10, 6}, respectively. Second, the sample size
per group (n) can be held constant while more groups
(having the same sample size) are added, increasing both
g and N. For this, we used n =6 and g = {2, 4, 6, 10},
which yielded N = {12, 24, 36, 60}, respectively. Next,
for each of these situations, four different kinds of
heterogeneity were simulated. All of the variables within
a given group either had variances of 1 (small) or 5
(large). For a given number of groups and sample size,
we did simulations where: (1) all groups had small
variances (equal dispersions, a baseline reference); (2)
one group had a large variance and the others were
small; (3) one group had a small variance and the others
were large; and (4) half of the groups had large variances
and half of them had small variances.

Simulations based on real data

We simulated data from two ecological data sets
(referred to as “Ekofisk” and “Norwegian continental
shelf”; discussed in the following sections), available as
examples in the PRIMER v6 computer package (Clarke
and Gorley 2006) with the PERMANOVA+ add-on
(Anderson et al. 2008). A full description of the methods
used for simulating data and calculating power from
these data sets is given in Appendix C. Source data files
and R code for both the estimation of parameters and
the simulations are provided in Supplement 2. For all
simulations based on real data sets, we consider the
rejection rates to be empirical measures of the relative
power of these tests to detect genuine differences
between groups whenever any of the underlying
parameters differed between those groups. We recognize
that there is an infinite number of ways that simulations
could be done to measure power and these simulations
are not intended to be exhaustive. They do, however,
allow some preliminary insights regarding the behavior
of these tests with more realistic data structures and
dissimilarity measures.

Ekofisk—The first data set, exemplifying changes in
species’ abundances in response to pollution, comes
from a study of marine soft-sediment benthic commu-
nities (173 taxa) surrounding the Ekofisk oil platform in
the North Sea (Gray et al. 1990). There were 39 sites
classified into four groups (A, B, C, and D) that
occurred along a gradient of increasing proximity to the
oil platform (Gray et al. 1990, Clarke and Gorley 2006).
For each pairwise comparison of groups along the
gradient (A vs. B, B vs. C, and C vs. D), power curves
for each of the resemblance-based tests were generated
on the basis of each of three different distance measures:
Euclidean distances on log(y + 1)-transformed abun-
dances, chi-square distances, and Bray-Curtis distances
on fourth-root transformed abundances. Three different
distributional approaches were used to simulate abun-
dance data, using parameters estimated from the real
data sets: (1) species’ values were drawn from a
multivariate lognormal distribution (MVLN), with
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TaBLE 2. Rejection rates (out of 1000 simulations) for each of five different multivariate tests for
data generated under either a multivariate normal (MVN) or Poisson/negative binomial (NB)
distribution in Euclidean space for g =2 groups and p =2 or 10 variables, as indicated.

MVN Poisson/NB
Test p=2 p=10 p=2 p=10
a) Balanced and homogeneous (m = 1, n; = n, = 12)
ANOSIM 0.051 0.063 0.052 0.053
Mantel 0.047 0.060 0.050 0.050
PERMANOVA 0.050 0.056 0.049 0.055
Pillai 0.053 0.042 0.046 0.044
PERMDISP 0.046 0.046 0.064 0.050
b) Balanced and heterogeneous (m = 2, n; = n, = 12)
ANOSIM 0.129 0.335 0.104 0.306
Mantel 0.082 0.164 0.074 0.152
PERMANOVA 0.047 0.053 0.055 0.059
Pillai 0.057 0.058 0.054 0.071
PERMDISP 0.291 0.919 0.266 0.875
¢) Unbalanced and homogeneous (m = 1, n; = 8, n, = 16)
ANOSIM 0.040 0.044 0.041 0.057
Mantel 0.041 0.045 0.045 0.055
PERMANOVA 0.053 0.059 0.041 0.044
Pillai 0.041 0.052 0.052 0.051
PERMDISP 0.049 0.062 0.048 0.066
d) Unbalanced and heterogeneous (m = 2, n; = 8, n, = 16)
ANOSIM 0.004 0.000 0.013 0.000
Mantel 0.003 0.000 0.012 0.000
PERMANOVA 0.019 0.009 0.033 0.009
Pillai 0.027 0.028 0.027 0.026
PERMDISP 0.275 0.912 0.232 0.868
e) Unbalanced and heterogeneous (m = 0.5, n; = 8, n, = 16)
ANOSIM 0.348 0.913 0.352 0.889
Mantel 0.358 0.908 0.359 0.879
PERMANOVA 0.090 0.150 0.101 0.128
Pillai 0.088 0.133 0.092 0.117
PERMDISP 0.273 0.826 0.262 0.760

Notes: Five different simulation scenarios are shown here: (a) equal sample sizes and
homogeneity; (b) equal sample sizes and heterogeneity; (c) unequal sample sizes and homogeneity;
(d) unequal sample sizes and heterogeneity with greater dispersion in the group with more samples;
and (e) unequal sample sizes and heterogeneity with greater dispersion in the group with fewer

samples.

values truncated to integers; (2) species’ values were
drawn independently from either a Poisson or a negative
binomial distribution (Poisson/NB) depending on their
degree of aggregation (dispersion parameter 0), which
for a given species was held constant across the groups;
or (3) the same approach as (2) was used, but the value
of O was estimated separately for each group, so
individual species’ dispersions varied among the groups.

Norwegian continental shelf—The second data set
exemplifies changes in species’ composition and beta
diversity of benthic soft-sediment macrofauna (809 taxa)
along a large-scale biogeographic gradient from 101 sites
sampled across five areas along the Norwegian conti-
nental shelf, spanning 15° of latitude from the North Sea
into the Arctic (Ellingsen and Gray 2002). We simulated
presence/absence data by randomly drawing each
species as a Bernoulli binary (0, 1) random variable
with probability of occurrence set equal to parameters
estimated from the data. Power curves for each of the
resemblance-based tests were generated for pairwise

comparisons between each of the areas along the
continuum from south to north (i.e., 1 vs. 2, 2 vs. 3, 3
vs. 4, and 4 vs. 5) on the basis of the Jaccard
resemblance measure.

RESULTS

The full set of simulation results obtained under all
scenarios (Sim1-Sim4) is provided in Supplement 3. The
full set of simulation results obtained on the basis of real
data sets (Ekofisk and Norwegian continental shelf) is
provided in Supplement 4. Key findings are summarized
in the following.

Simulation scenarios

Balanced designs (Siml).—With uncorrelated bivar-
iate normal balanced data and two groups in Euclidean
space, increasing heterogeneity of dispersions yielded
substantial increases in the rejection rates for both
ANOSIM and the Mantel test (Table 2, Fig. la).
Rejection rates for both of these tests increased with
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Fic. 1. Empirical rejection rates (£SE, o = 0.05) for each of four different test statistics with increasing sample size under
heterogeneity for 1000 simulated data sets from a multivariate normal distribution with p =2 variables, g =2 groups, and (a) equal
sample sizes, m = 5; (b) unequal sample sizes (n,/n; = 2), with greater variance in the smaller group (m = 0.2); (c) unequal sample
sizes (n,/n; =2), with greater variance in the larger group (m =5); and (d) equal sample sizes and variances (m = 1), but groups have
different correlation structures, with p; =0.9 and p, =—0.9. The significance level of & =0.05 is shown as a dashed line, and the 95%
confidence interval for a test whose true rejection rate is equal to o is shown with dotted lines. Also, for the ith individual group, n;
is the sample size, p; is the correlation between pairs of variables for all variables in group 7, and m is the ratio of the variances in the

two groups.

total sample size (Fig. la) and with increases in the
number of variables, and ANOSIM also had greater
rejection rates than the Mantel test (Fig. la, Table 2). In
contrast, PERMANOVA and Pillai’s trace remained
unaffected by heterogeneity for balanced designs (Fig.
la, Table 2). Highly similar results were obtained when
the negative binomial distribution was used, although
Pillai’s trace showed modest inflated type I error under
severe heterogeneity (e.g., m = 10; Table 3a, c).
Unbalanced designs (Sim2).—For unbalanced de-
signs, all tests were liberal when the large dispersion
occurred in the group with the smaller sample size (Fig.
1b, Tables 2 and 3), but especially ANOSIM and the
Mantel test. Rejection rates for PERMANOVA and
Pillai’s trace were constant for a given ratio of sample
sizes in the two groups (e.g., leveling off at <0.20 in Fig.
1b; see also Supplement 3), whereas for ANOSIM and

the Mantel test, rejection rates increased with increases
in the total sample size.

In contrast, all tests, and especially ANOSIM and the
Mantel test, were overly conservative (with rejection
rates <0.05) when the group with the larger sample size
also had the greater dispersion (Fig. 1c, Tables 2 and 3).
This conservatism became worse with increasing num-
bers of variables (Tables 2 and 3), increasing disparity in
the sample sizes, or increasing heterogeneity (Supple-
ment 3). Regardless of which group had the greater
dispersion, however, PERMDISP was able to detect this
heterogeneity equally reliably (compare, e.g., PERM-
DISP vs. either ANOSIM or the Mantel test when m =
0.1, then when m = 10 in Table 3).

Correlation structure (Sim 3)—Both ANOSIM and
the Mantel test (albeit to a lesser extent) were sensitive to
differences in correlation structure between groups and
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TaBLE 3. Rejection rates (out of 1000 simulations) for each of five different multivariate tests,
including one designed specifically to detect differences in dispersion among groups
(PERMDISP), for data generated under a multivariate normal or negative binomial distribution
in Euclidean space with g =2 groups and p = 2 variables.

Test and m value PERMDISP ANOSIM Mantel PERMANOVA Pillai
a) MVN, balanced
1.0 0.046 0.051 0.047 0.050 0.053
2.0 0.291 0.129 0.082 0.047 0.057
5.0 0.921 0.665 0.339 0.054 0.062
10.0 0.994 0.948 0.744 0.064 0.075
b) MVN, unbalanced
0.1 0.986 0.995 0.996 0.171 0.187
0.2 0.871 0.903 0.910 0.152 0.160
0.5 0.273 0.348 0.358 0.090 0.088
1.0 0.049 0.040 0.041 0.053 0.041
2.0 0.275 0.004 0.003 0.019 0.027
5.0 0.835 0.000 0.000 0.011 0.016
10.0 0.980 0.002 0.000 0.008 0.012
c) Negative binomial, balanced
1.0 0.064 0.052 0.050 0.049 0.046
2.0 0.266 0.104 0.074 0.055 0.054
5.0 0.808 0.621 0.320 0.049 0.067
10.0 0.968 0.931 0.681 0.070 0.117
d) Negative binomial, unbalanced
0.1 0.923 0.989 0.991 0.221 0.276
0.2 0.780 0.892 0.892 0.177 0.181
0.5 0.262 0.359 0.359 0.101 0.092
1.0 0.048 0.045 0.045 0.041 0.052
2.0 0.232 0.012 0.012 0.033 0.027
5.0 0.637 0.001 0.001 0.018 0.026
10.0 0.767 0.005 0.005 0.015 0.036

Notes: Two different simulation scenarios are shown here: (a) equal sample sizes (n; =n, = 12);
and (b) unequal sample sizes (n; = 8, n, = 16). Values of m indicate when dispersions were
homogeneous (m = 1); when heterogeneity occurred (m # 1) and, for unbalanced designs, whether
there was greater dispersion in the group with more samples (m > 1); or greater dispersion in the
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group with fewer samples (m < 1).

their rejection rates increased with increasing sample
sizes (Fig. 1d). Rejection rates were as high as 100% for
ANOSIM when one group had strong negative corre-
lation structure, while the other had strong positive
correlation structure (Fig. 1d). Pillai’s trace was
unaffected by heterogeneity in correlation structure for
balanced designs, but showed increased rejection rates
(up to about 30%) for unbalanced designs (Supplement
3). PERMANOVA, however, remained completely
unaffected by differences in correlation structure (Fig.
1d; Supplement 3).

Numbers of groups (Sim 4)—For ANOSIM, any
form of heterogeneity among multiple groups increased
rejection rates (Fig. 2). Having half of the groups with
large dispersions and half with small dispersions resulted
in the highest rejection rates (dark triangles, left-hand
panels in Fig. 2), followed first by the situation where
one group had large dispersion relative to the others
(white squares), and then by the situation where one
group had small dispersion relative to the others (white
triangles). Under the “half large” scenario for ANO-
SIM, when the total sample size remained constant
(constant N and decreasing n; top left-hand panel of Fig.
2), rejection rates decreased with increasing group

number, whereas when the sample sizes per group
remained constant (increasing N and constant n; bottom
left-hand panel of Fig. 2), rejection rates increased as
more groups were added. Very similar results (but with
lower average rejection rates) were demonstrated by the
Mantel test (Supplement 3). The power of PERMDISP
to detect heterogeneity under these scenarios was greater
than that of ANOSIM, but in other ways, patterns were
similar (Fig. 2).

In contrast, PERMANOVA was not sensitive to
heterogeneity under any of these scenarios, but slightly
increased rejection rates (between 0.05 and 0.10) were
obtained when one group had large dispersion relative
to the others (Fig. 2). The results for Pillai’s trace
mirrored those for PERMANOVA (see Supplement 3).

Simulations based on real data

Ekofisk.—There were only slight differences in power
among methods in analyses of simulations based on the
Ekofisk data set (Fig. 3; Appendix D). The method
having the greatest empirical power also depended on
the distribution upon which the simulations were based.
When data were generated using the MVLN distribu-
tion, then the Mantel test tended to have the greatest
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Fic. 2.  Empirical rejection rates (=SE, o = 0.05) for each of three different tests with increasing numbers of groups (g), for
balanced data under four different dispersion scenarios (all small, one large, half large/half small [“half large”], or one small), and
where either the total sample size (V) remained constant (top panels), or the number of samples per group (7) remained constant
(bottom panels), as calculated from 1000 simulated data sets from a multivariate normal distribution with p =2 variables. Dashed

and dotted lines are as described for Fig. 1.

power, followed by ANOSIM, then PERMANOVA
(Appendix D). In contrast, when data were generated
using a suite of negative binomial variables and Poisson
variables, either with or without changes in the
dispersion parameters among groups, then PERMA-
NOVA generally had the greatest power, followed by
the Mantel test, then ANOSIM (Fig. 3; Appendix D).
These general patterns were broadly consistent for
each pair of groups being compared (A vs. B, B vs. C,
and C vs. D; see Appendix D and Supplement 4).
Simultaneous estimation of empirical power using
PERMDISP showed that for some pairwise compari-
sons, the change in location was the dominant feature of
group differences (e.g., B vs. C), whereas for others,
substantial differences in dispersion occurred as well
(e.g., C vs. D). Interestingly, when simulated differences
very clearly had dispersion as well as location effects
(e.g., see the PERMDISP results for the comparison of
C vs. D using Poisson/NB distributions with varying
dispersion parameter), PERMANOVA had greater

power than either Mantel or ANOSIM (Appendix D,
Supplement 4).

The choice of transformation and resemblance
measure also affected power. For some of the groups
being compared from the Ekofisk data (e.g., A vs. B),
analyses based on Euclidean distances of log(y + 1)-
transformed values had the greatest power, while for
others (e.g., B vs. C), analyses based on chi-square
distances had the greatest power (Fig. 3; Appendix D,
Supplement 4). The rank-order differences in power
between the different resemblance measures investigated
here tended to remain consistent, however, for a given
pair of groups being compared, regardless of which
distributions were used to simulate the underlying
variables (Appendix D, Supplement 4).

Norwegian continental shelf—PERMANOVA had
much greater power than either Mantel or ANOSIM
to detect changes in composition in comparisons of area
1 vs. 2 and also area 2 vs. 3 (Fig. 4; Appendix E). For
both of these comparisons, the MDS plot and PERM-
DISP revealed a substantial change in dispersion, as well

85UB01 SUOWIWOD BAITERID) Bl |dde au) Aq peusenob 818 B0 YO ‘88N JO'S3|N1 J0j AReIg 1T BUIIUO AB|IM UO (SUOIPUOD-PUR-SWLBILIOD" A3 | I Ae.q 1 jeu1|uo//Sdhy) SUORIPUOD PUR LB L 8U} 88S *[Z02/TT/9Z] uo Arigiauiiuo As|im ‘enbayioliaig A%iqi 13d3 Ad T'0T0Z-2T/068T OT/I0p/wo0" A3 IM ARelq Ul |uo'S U0 fesa//sdiy Wwioly pepeojumoq ‘ ‘€T0Z ‘STOLLGST



566 MARTI J. ANDERSON AND DANIEL C. I. WALSH Feologieal Monographs
Chi-square distance Log-transformed Euclidean distance Bray-Curtis resemblance

1.0+

8_ 0.8-

o

Il

3

IO 0.6

S

Qo Method

= 0.4+ © ANOSIM

.S o0 Mantel

g A PERMANOVA

T * PERMDISP

T o02-
0.0 4

000 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
Proportion of distance traveled from Ekofisk group B to group C

Fic. 3. Empirical power of four multivariate tests to detect changes between group B (1-3.5 km from the center of the oil-
drilling activity, ng = 12) and group C (0.25-1 km from the center of the oil-drilling activity, nc = 10) for data simulated using
parameters for individual species of soft-sediment benthic macrofauna estimated from the Ekofisk oilfield data sets (p = 173
species). The distributions used to simulate the data were a mixture of independent variables having either Poisson or negative
binomial distributions with dispersion parameters that varied between the two groups (see Appendix C for more details). The
resulting counts were analyzed using chi-square distances (left), Euclidean distances of log(y + 1)-transformed values (middle), or
Bray-Curtis resemblances on fourth-root transformed values (right). Results comparing other pairs of groups for the Ekofisk data
set and based on other distributions for underlying variables are provided in Appendix D.

as location, of the multivariate data cloud in Jaccard more powerful to detect differences for area 4 vs. 5
space (see Anderson et al. 2006). The Mantel test, in (Appendix E), while, in contrast, Mantel and ANOSIM
turn, was more powerful than ANOSIM to detect these had slightly better power than PERMANOVA for the
compositional differences. PERMANOVA was also comparison of area 3 vs. 4, although the disparity in
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FiG. 4. Empirical power of four multivariate tests to detect changes in community structure and beta diversity of benthic soft-
sediment macrofauna (809 species) between area 2 and area 3 (n, =21, n; =25), along a biogeographic transition on the Norwegian
continental shelf. Analyses were based on Jaccard resemblances of presence/absence data from Bernoulli(0, 1) random draws,
where probabilities were estimated from proportional occurrences of species in the data set for each group (see Appendix C for
further simulation details). Results comparing other pairs of areas for the Norwegian continental shelf data set are given in
Appendix E.
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power among methods was not so large for these two
sets of comparisons (Fig. 4, Appendix E).

In some cases, ANOSIM and the Mantel test
demonstrated the unusual behavior of being initially
highly conservative, generating power curves that were
not monotonically increasing. More specifically, their
power to detect initial (smaller) differences in frequen-
cies of occurrences of species between groups actually
sunk down to substantially below the 0.05 significance
level, even effectively dropping down to zero (Fig. 4;
Appendix E). This odd behavior was more pronounced
for ANOSIM than for Mantel, and occurred primarily
under scenarios where the increase in dispersion was
accompanied by an increase in the sample size (e.g., n; =
16, n, =21). PERMANOVA, in contrast, demonstrated
no such effect, generating power curves that were both
monotonic and quickly responsive to quite small
changes in compositional frequencies between groups
(Fig. 4; Appendix E).

Discussion

After the original description of the F statistic (Fisher
1925, Snedecor 1934), it was some time before the
behavior of the univariate F test in ANOVA for real
data became better understood by reference to its
performance under potential violations of its assump-
tions (Pearson 1931, Cochran 1947, Box 1953, 1954) or
by comparison with nonparametric alternatives devel-
oped later (e.g., Feir-Walsh and Toothaker 1974,
Tomarken and Serlin 1986). We are in a similar
situation with respect to our current knowledge of the
multivariate resemblance-based permutation tests. Al-
though ANOSIM, PERMANOVA, and the Mantel test
are now very widely used in ecology and other
disciplines, this is the first study, to our knowledge,
which focuses on the effects of heterogeneity of
dispersions on these multivariate resemblance-based
tests.

Effects of heterogeneity for balanced designs
Given that the ANOSIM R statistic is described as a

test of the very general null hypothesis of Hy: “no
differences among the groups,” and the fact that
Clarke’s (1993: 131) original description states that the
test “will have some power to detect” this kind of
change, referring to differences in dispersion, researchers
have so far been very wise to interpret significant R
statistics simply as providing evidence for “a difference”
among groups, but without honing their inferences
down any further in terms of differences in locations,
dispersions, the shape of the data cloud, or perhaps all
of these things, within a given context. Indeed, the
fundamental idea that the true underlying null hypoth-
esis in a statistical comparison of two (or more) sampled
groups has (at least) two parts (equality of means and
equality of variances) can be traced back to the work of
Fisher (1939).
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One might expect the ANOSIM test to be more robust
to heterogeneity than either PERMANOVA or the
Mantel test, as it not only uses a permutation algorithm,
but also reduces the distance matrix down to ranks.
Surprisingly, this did not occur. In fact, it is clear that
the construction of the test statistic itself makes it a kind
of “omnibus” test, being much more sensitive to
heterogeneity of dispersions and differences in correla-
tion structure among groups than was PERMANOVA.
The Mantel test has a broadly similar construction, and
although it was not as severely affected by heterogeneity
as the ANOSIM test under any scenario examined here,
it did follow all of the general patterns observed for
ANOSIM in its essential behavior.

Why does heterogeneity lead to small P values
for ANOSIM?

The value of the R statistic in ANOSIM measures
directly the degree of distinctiveness of groups, regard-
less of sample size (Clarke 1993). Under a scenario of
one group having larger dispersions than another, when
centroids are equal, the value of R does not necessarily
get very large. For example, in Fig. 5, a plot is shown of
a single set of simulated bivariate normal data, where
the population variances for the two variables in group 2
are twice those in group 1. The value of the PERMA-
NOVA pseudo-F and ANOSIM R statistics for this
particular set of data are each shown to the right of this,
placed within the context of their distributions under
permutation. Note that even though the value of R is
quite small for the simulated data (R = 0.0963), the
distribution of the R statistic under permutation has
been shifted to the left, thus resulting in a small P value
for the ANOSIM test. Under repeated simulation of
such data sets, the distribution of the P values for
ANOSIM is therefore not uniform. Instead, many are
small, and the percentage of P values less than oo =0.05
(the rejection rate) is around 24% (Fig. 5). In contrast,
the pseudo-F statistic is quite robust to this heterogene-
ity, showing a large P value for this particular simulated
data set (P = 0.725), as well as a quite uniform
distribution of P values for the full set of simulations
and a rejection rate of ~4% (Fig. 5).

The reason that the ANOSIM test yields a significant
result (a small P value) is not because the observed
value of R is large, but rather because the distribution
of R™ under permutation is shifted to the left,
including a large number of negative values (Fig. 5).
Negative values of R indicate that the average of the
ranks of within-group dissimilarities is greater than the
average of the ranks of between-group dissimilarities
(e.g., Chapman and Underwood 1999). This arises
under permutation for groups with heterogeneous
dispersions because, if there is greater clumping of
samples in (say) one or more of the groups in the
original data, then under permutation the within-group
dissimilarity values will look larger (on average) and
the between-group dissimilarities will look smaller (on
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Fic. 5. (a) Scatterplot of a single set of simulated data from a bivariate normal distribution ( p = 2) for each of g =2 groups
having equal sample sizes (n; = n, = 24), but different dispersions (m = 2), along with the test statistics and permutation
distributions for (b) the PERMANOVA pseudo-F statistic and (c) the ANOSIM R statistic. Also shown are the distributions of P
values and associated rejection rates obtained for (d) PERMANOVA and (¢) ANOSIM for 1000 such data sets.

average) compared to what was originally observed, so
the permutation distribution of R™ shifts to the left
relative to the original R value.

If a statistically significant result is accompanied by a
value of R that is not very large, this could be a signal
that the difference is primarily a difference in dispersion.
For example, under the scenario depicted in Fig. 5, the
median value of R obtained under simulation was 0.021
(with 0.025 and 0.975 quantile values for R of —0.023
and 0.115, respectively). A statistically significant, yet
small, value of R is no guarantee, however, that
differences are indeed differences in dispersion and not
(small) differences in location, whatever pattern might
be evidenced on an accompanying MDS (or other)
ordination plot. In practice, unfortunately, there is no
way to unravel location vs. dispersion effects using
ANOSIM (or, for that matter, Mantel).

The increased rejection rates of ANOSIM (or Mantel)
caused by differences in the degree or direction of
correlation structure among groups was unexpected.
The detection of “distinctiveness” of groups purely on
the basis that the groups have different shapes is

something that is (once again) likely to be caused by
the distribution of R™ under permutation being tugged
to the left, rather than the value of R being large, per se.
In other words, strong correlations generate a “clump-
ing” effect into distinct nonspherical shapes, which will
be seen by ANOSIM or Mantel in much the same way as
differences in dispersions. More specifically, under
permutation, the within-group dispersions will look
large relative to their values in the original data set,
shifting R™ to the left.

Robustness of PERMANOV A for balanced designs

Importantly, the response of either ANOSIM or
Mantel to increases in sample size was to cause
increasing rejection rates of the null hypothesis under
a given scenario of heterogeneity. This is because more
samples provide greater power to detect this type of
change for these omnibus tests. An increase in rejection
rates under heterogeneity with increasing sample size is
also seen in the behavior of the univariate rank-based
Kruskal-Wallis test (Feir-Walsh and Toothaker 1974).
This effect did not occur for either Pillai’s trace or
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PERMANOVA. This is because, by design, PERMA-
NOVA’s pseudo-F and Pillai’s trace statistics focus
purely on measuring differences in locations (centroids).
Thus, as in the famous reference to the univariate
ANOVA F statistic being like an “ocean liner” (Box
1953), these approaches, too (for balanced designs), will
not be easily rocked by differences in other ancillary
quantities (like dispersions) that they are not designed to
test.

When there were more than two groups, ANOSIM
showed greater sensitivity to heterogeneity when half of
the groups had large dispersions and half had small
dispersions. In contrast, PERMANOVA and Pillai’s
trace were more sensitive to heterogeneity (albeit only
mildly, as these were balanced designs) when it occurred
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in the form of one group being substantially more
dispersed than the others. The latter result mirrors what
has been found for univariate ANOVA (Box 1953,
1954). This led to the rationale behind the common use
in ecology (and beyond) of Cochran’s test for homoge-
neity (Cochran 1941, 1951), a statistic consisting of the
ratio of the largest estimated within-group variance vs.
the sum of the individual estimated within-group
variances. Thus, Underwood (1981, 1997) recommended
the use of Cochran’s test for homogeneity of variances
prior to implementing a univariate ANOVA test. A
multivariate resemblance-based analogue to Cochran’s
test has not yet been developed, although this would be a
useful topic for future research. Nevertheless, PERMA-
NOVA was overall still quite robust to this form of
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heterogeneity; for example, even with large numbers of
groups (g = 10) and with one group having much larger
dispersion than the others, the rejection rate only
increased to around 0.10 (Fig. 2).

The relative robustness of PERMANOVA and Pillai’s
trace to heterogeneity for balanced designs mirrors
similar original results obtained for the F statistic in
univariate ANOVA (Horsnell 1953, Box 1954, Glass et
al. 1972), as well as the results obtained by Olson (1974)
indicating that Pillai’s trace was more robust to
heterogeneity than the other classical MANOVA
statistics. It might be tempting to consider using Pillai’s
trace routinely, or even to couple it with a permutation
algorithm for calculating P values (as is done in the
canonical analysis of principal coordinates, CAP, a
method with which the classical MANOVA statistics
have a clear kinship, see Anderson and Robinson [2003]
and Anderson and Willis [2003] for details), but Pillai’s
trace will be sensitive to differences in correlation
structure among groups, and, furthermore, it simply
cannot be calculated when there are more variables than
samples (p > N), nor can it be implemented on the basis
of non-Euclidean distances (such as Bray-Curtis or
Jaccard) as are commonly used in the analysis of
ecological communities.

Effects of heterogeneity for unbalanced designs

All of the tests were sensitive to heterogeneity of
dispersions for unbalanced designs. The direction of the
effects depended on the direction of heterogeneity with
respect to the differences in sample sizes. If a group with
large dispersions also had a small number of samples,
then rejection rates increased. Consider that the position
of just a few points in a group drawn from a population
that has large variation, relative to a large number of
samples in a tightly clustered group, could well fall on
one side of that cluster or the other, just by chance, even
though the two groups have the same population
centroid. In contrast, if the group with the large
dispersions also had a large number of samples, then
the tests all became quite conservative; it is very difficult
to get a small tightly clustered group to fall outside of a
large group that is widely dispersed, so differences in
centroid (even if they were there), become very difficult
to detect in such cases. These effects of heterogeneity for
unbalanced designs mirror precisely what has been
shown for univariate ANOVA: namely, conservatism
when variances are positively related to group sample
sizes and liberalism when the relationship is negative
(e.g., Welch 1937, Glass et al. 1972).

The fact that effects of heterogeneity on rejection rates
for unbalanced designs were constant for a given sample
size ratio in the case of Pillai’s trace and PERMANOVA
was interesting and warrants further study. Although
not pursued further here, it should be possible to
demonstrate this result as an asymptotic property of
these tests, especially by reference to the construction of
these test statistics. In contrast, just as in the balanced-
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design case, ANOSIM and Mantel rejection rates always
increased substantially with increases in the total sample
size.

Power

PERMANOVA was more powerful than the other
tests to detect changes in community structure for the
majority of the scenarios simulated here based on real
data sets. This aligns with previous work demonstrating
greater power for canonical partitioning methods over
the Mantel test (Legendre and Fortin 2010). Further-
more, the ANOSIM test was never found to be more
powerful than the Mantel test. This occurred despite the
fact that, under simpler idealized scenarios (Siml-
Sim4), ANOSIM rejection rates tended to be much
higher than PERMANOVA or the Mantel test. This is
likely due to the ranking of dissimilarities, intrinsic to
the ANOSIM test, which will have different conse-
quences for data sets where the underlying dissimilarities
are distributed in different ways.

For simulations of count data (Ekofisk), differences in
power were not large and the method with the greater
power depended on the distributions used for the
simulation. PERMANOVA generally had more power
to detect changes when data were simulated using
separate independent Poisson and negative binomial
distributions, whereas Mantel had more power when the
truncated MVLN distribution was used. One possible
explanation for this result is that the Mantel test is
sensitive to changes in correlation structure among
variables (see Sim3; Fig. 1d), and such differences (as
estimated from the real data) were indeed able to be
built in to the truncated MVLN simulations. PERMA-
NOVA, in contrast, is not sensitive to differences in
correlation structure (shape). A resemblance-based test
statistic that takes into account the correlation structure
among variables (such as CAP; Anderson and Robinson
2003, Anderson and Willis 2003) would also be expected
to have more power than PERMANOVA in the
presence of high correlation structures in the data
(Anderson and Robinson 2003), although this was not
examined explicitly here.

Relative power also depended on the resemblance
measure used as the basis of the analysis. Different
resemblance measures emphasize fundamentally differ-
ent aspects of the underlying multivariate data matrix
(Clarke et al. 2006). Euclidean distance is more focused
on differences in abundance per species and differences
in total abundances per sample, chi-square distance
emphasizes changes in proportional abundances, with
heavier weights being given to rarer species (Legendre
and Gallagher 2001), whereas Bray-Curtis is more
focused on compositional changes in species’ identities.
Thus, for example, greater power obtained using
Euclidean distances for a particular comparison may
simply be a consequence of the differences in (log)
abundance per species between groups being more
pronounced in those cases than either the turnover in

85UB01 SUOWIWOD BAITERID) Bl |dde au) Aq peusenob 818 B0 YO ‘88N JO'S3|N1 J0j AReIg 1T BUIIUO AB|IM UO (SUOIPUOD-PUR-SWLBILIOD" A3 | I Ae.q 1 jeu1|uo//Sdhy) SUORIPUOD PUR LB L 8U} 88S *[Z02/TT/9Z] uo Arigiauiiuo As|im ‘enbayioliaig A%iqi 13d3 Ad T'0T0Z-2T/068T OT/I0p/wo0" A3 IM ARelq Ul |uo'S U0 fesa//sdiy Wwioly pepeojumoq ‘ ‘€T0Z ‘STOLLGST



November 2013

species’ identities or the changes in proportional
abundances. These results serve to highlight that the
resemblance measure used as the basis of the analysis
should be chosen carefully by reference to the underlying
ecological questions of greatest interest to the researcher
within a given context.

Location vs. dispersion effects

Warton et al. (2012) stated that distance-based tests
(such as ANOSIM or PERMANOVA) confound
location and dispersion effects. However, as has been
clearly demonstrated here, it is not the construction of
the PERMANOVA test statistic itself that confounds
location and dispersion effects, but rather the underlying
dissimilarity measure that is used as the basis of the
analysis which may do this (see Appendix B). PERMA-
NOVA (in the case of balanced designs), as a test
statistic, will focus on differences in location only, but
this will be done in the space of the resemblance measure
chosen. Thus, careful consideration of the meaning of
the resemblance measure and what it actually measures
by reference to the wealth of information in the
underlying multivariate data set is clearly necessary.
Measures such as Jaccard or Bray-Curtis, commonly
used in ecology, do not retain the mean—variance
properties of original abundances, but they do empha-
size, instead, the similarity in composition of species’
identities among samples, which the Euclidean distance
measure does not.

In contrast to PERMANOVA, even for balanced
designs, ANOSIM and the Mantel test really do
confound location and dispersion effects in the sense
that one cannot unravel which of these types of
differences (in the space of the chosen resemblance
measure) might be driving any reported significant
results. Furthermore, their hyper-conservatism in the
face of unbalanced designs where groups with larger
sample sizes have greater dispersion suggests that they
cannot, unfortunately, be relied upon more generally as
“omnibus” tests for differences among groups. Impor-
tantly, PERMANOVA (and Pillai’s trace) also lack the
desired level of robustness to heterogeneity for unbal-
anced designs, pointing directly to the need for new
methods to be developed that can be used to test for
differences in location even in the presence of differences
in dispersions among groups for cases where there are
unequal sample sizes.

Other methods

Several other resemblance-based test statistics de-
scribed to date will yield equivalent P values under
permutation for the one-way case to the methods
examined in detail here (see Appendix A and Warton
and Hudson 2004). Specifically, the results of simula-
tions obtained here for the Mantel test are equivalent to
what would be obtained using either dg/dw, as proposed
by Good (1982) and Smith et al. (1990), or the MRPP
statistic calculated directly on dissimilarities (Mielke et
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al. 1981), provided the design is balanced and particular
weights are used in the construction of the MRPP test
statistic (see Appendix A). Similarly, the results of
simulations obtained here for PERMANOVA are
equivalent to what would be obtained using the statistics
described by Pillar and Orloci (1996) and Gower and
Krzanowski (1999), or MRPP calculated on squared
dissimilarities (for a particular choice of weights, but for
both unbalanced and balanced designs; see Appendix
A). Note, however, that the equivalence of these
methods to PERMANOVA is only true for the one-
way ANOVA design, and does not necessarily hold
more generally for higher-way designs (e.g., Torres et al.
2010). In addition, if Euclidean distances are used as the
basis of the analysis, then the results obtained using
PERMANOVA are equivalent to what would be
obtained using either a redundancy analysis (RDA) for
an ANOVA factor by permutation (e.g., Verdonschot
and ter Braak 1994) or the geometric F test by
randomization proposed by Edgington (1995). Similar-
ly, if the analysis is based on a chi-square distance
matrix, then results obtained using PERMANOVA are
expected to mirror results obtained using canonical
correspondence analysis (CCA; ter Braak 1986, Legen-
dre and Gallagher 2001), where the environmental
predictor variables are orthogonal ANOVA codes for
a factor.

Other approaches, not investigated here, include what
might be called “stacked” test statistics or “variable-
based” statistics, such as the sum of individual F ratios
of Edgington (1995), the “LR-IND,” or “sum-of-LR”
tests (Warton and Hudson 2004, Warton 2011, Warton
et al. 2012), all of which also use permutations to obtain
P values for inference. These effectively treat the
multivariate problem as a sum of individual univariate
problems. It is well known, however, that high-
dimensional information may not be manifest in the
original individual variables, so individual variable-
based approaches will reflect this limitation. We expect
that the relative power of these approaches compared to
PERMANOVA or to a MANOVA statistic like Pillai’s
trace, with P values obtained using permutations, or a
dissimilarity-based approach that takes into account
correlation structure, such as CAP, will depend heavily
on the type of scenario being examined, the relative
between- vs. within-group variation among different
variables that show some effects, the extent to which
rare species are responsible for turnover among groups,
and the degree of correlation structure among the
variables.

Future research directions

Although the present study was very broad in scope,
there are clearly many avenues requiring further
research. The initial focus here was on rejection rates
when centroids were equal, and subsequent power
comparisons were limited to examination of certain
alternative hypotheses for specific data sets and distance
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measures. Exploration of potential general principles
regarding comparative power of these methods under
different types of ecological scenarios and for a variety
of distance measures is needed. More work is also
needed to clarify the behavior of these and other tests for
different shapes of distributions in underlying variables,
such as those with extreme values or outliers, including
to better understand the properties of different distance
measures when used with variables having differently
shaped distributions. In addition, despite their some-
what similar behavior overall when compared to
PERMANOVA, ANOSIM and the Mantel test clearly
are not equivalent and their rejection rates can be very
different in size under a given scenario. Thus, identifying
situations when ranking the distances either increases or
decreases the relative power of ANOSIM compared to
the Mantel test also requires more study.

Conclusions

For balanced designs, PERMANOVA was quite
robust to heterogeneity, but ANOSIM and the Mantel
test were not. These resemblance-based tests are clearly
not testing the same null hypothesis. ANOSIM and the
Mantel test examine the more general Hy: “samples in
the same group are no more tightly clustered together
than samples from different groups,” whereas PERMA-
NOVA focuses on the more specific Hy: “there are no
differences in centroids among the groups.” Note that in
all cases, the “clumping of samples within groups” or the
“differences in centroids” (a shift in the location of the
multivariate data cloud) are defined in the space of the
resemblance measure chosen for the analysis. As ANO-
SIM and the Mantel test are more general “omnibus”
tests, rejection of the null hypothesis in either case will
indicate only that some feature of the groups differ to
make them distinct. This feature could be (1) locations,
(2) dispersions, (3) the particular shape (correlation
structure) of the data clouds being compared; or indeed,
some combination of these things. Although reduced-
space ordinations (such as nonmetric MDS) can assist in
interpreting the potential nature of any differences
detected, it is not possible with these tests or any
associated plots to make more specific statistical
inferences.

Although the generality of these more omnibus tests
can often be useful, in many ecological studies it may be
quite important, however, to hone inferences further.
For example, ecologists may want to distinguish—/as
there been a fundamental shift in the community structure
itself (a change in location)? Or rather, has the
community structure become more (or less) variable (a
change in dispersion)? Or both? For balanced designs,
PERMANOVA can be used effectively to make
inferences about differences in centroids alone (i.e.,
shifts in the location of the multivariate cloud of sample
units in the space of the resemblance measure), while
PERMDISP can be used to make inferences about
differences in multivariate dispersions alone.

Ecological Monographs
Vol. 83, No. 4

Importantly, none of the tests examined here were
robust to heterogeneity for unbalanced sampling de-
signs, being either excessively liberal or extremely
conservative under different scenarios, especially ANO-
SIM and the Mantel test, which became worse with
increasing total numbers of samples. Thus, we do not
recommend the routine use of these tests for unbalanced
designs where heterogeneity of dispersions is known to
occur, as interpreting results and drawing inferences in
such cases can be problematic. Given the common
occurrence of genuine heterogeneity in multivariate
ecological data, the development of tests for differences
in centroids that explicitly take into account heteroge-
neity of within-group dispersions is an important topic
for future research, and will certainly be necessary to
analyze unbalanced sampling designs rigorously in
multivariate tests to compare groups.
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SUPPLEMENTAL MATERIAL

Appendix A
Description of statistical tests and related methods (Ecological Archives M083-019-A1).

Appendix B

Example showing how data simulated from groups with equal centroids but different variances in Euclidean space can yield
groups with unequal centroids in Bray-Curtis space (Ecological Archives M083-019-A2).

Appendix C

Description of data sets (Ekofisk and Norwegian continental shelf) and simulation methods used to compare the power of
statistical tests to detect real changes in multivariate ecological assemblages (Ecological Archives M083-019-A3).

Appendix D

Additional figures showing empirical power of multivariate tests for comparisons of groups based on the Ekofisk data

(Ecological Archives M083-019-A4).

Appendix E

Additional figure showing empirical power of multivariate tests for comparisons of groups based on the Norwegian continental

shelf data (Ecological Archives M083-019-A5).

Supplement 1

R code and associated source files of parameters used to conduct simulations Sim1-Sim4 (Ecological Archives M083-019-S1).

Supplement 2

R code and associated source files used to generate parameters and conduct simulations based on real ecological data sets

(Ecological Archives M083-019-S2).

Supplement 3

Full results of all simulation scenarios described in Sim1-Sim4 (Ecological Archives M083-019-S3).

Supplement 4

Full results of all simulations based on real ecological data sets (Ecological Archives M083-019-S4).
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