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Abstract. ANOSIM, PERMANOVA, and the Mantel test are all resemblance-based
permutation methods widely used in ecology. Here, we report the results of the first simulation
study, to our knowledge, specifically designed to examine the effects of heterogeneity of
multivariate dispersions on the rejection rates of these tests and on a classical MANOVA test
(Pillai’s trace). Increasing differences in dispersion among groups were simulated under
scenarios of changing sample sizes, correlation structures, error distributions, numbers of
variables, and numbers of groups for balanced and unbalanced one-way designs. The power of
these tests to detect environmental impacts or natural large-scale biogeographic gradients was
also compared empirically under simulations based on parameters derived from real ecological
data sets.

Overall, ANOSIM and the Mantel test were very sensitive to heterogeneity in dispersions,
with ANOSIM generally being more sensitive than the Mantel test. In contrast,
PERMANOVA and Pillai’s trace were largely unaffected by heterogeneity for balanced
designs. PERMANOVA was also unaffected by differences in correlation structure, unlike
Pillai’s trace. For unbalanced designs, however, all of the tests were (1) too liberal when the
smaller group had greater dispersion and (2) overly conservative when the larger group had
greater dispersion, especially ANOSIM and the Mantel test. For simulations based on real
ecological data sets, PERMANOVA was generally, but not always, more powerful than the
others to detect changes in community structure, and the Mantel test was usually more
powerful than ANOSIM. Both the error distributions and the resemblance measure affected
results concerning power.

Differences in the underlying construction of these test statistics result in important
differences in the nature of the null hypothesis they are testing, their sensitivity to
heterogeneity, and their power to detect important changes in ecological communities. For
balanced designs, PERMANOVA and PERMDISP can be used to rigorously identify location
vs. dispersion effects, respectively, in the space of the chosen resemblance measure. ANOSIM
and the Mantel test can be used as more ‘‘omnibus’’ tests, being sensitive to differences in
location, dispersion or correlation structure among groups. Unfortunately, none of the tests
(PERMANOVA, Mantel, or ANOSIM) behaved reliably for unbalanced designs in the face of
heterogeneity.

Key words: ANOSIM; Bray-Curtis; community composition; dispersion; dissimilarities; homogeneity;
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INTRODUCTION

The validity of classical multivariate analysis of

variance (MANOVA) relies on certain assumptions,

including the independence of the sample units (e.g., row

vectors), the multivariate normality of errors, and the

homogeneity of variance–covariance matrices among

the groups (e.g., Mardia et al. 1979, Seber 1984, Rencher

1998). The classical MANOVA test statistics (i.e., Wilks’

lambda, the Hotelling-Lawley trace, Pillai’s trace, and

Roy’s largest root criterion) are designed specifically to

test the null hypothesis (H0) of no differences in the

multivariate centroids (the central location, or vector of

mean parameters for all variables) among the groups.

These tests also require the total number of sample units

(N, say) to be large relative to the number of variables

( p, say), and cannot be calculated when p . N.

In many biological, ecological, and environmental

data sets, the assumptions of MANOVA are not likely

to be met (e.g., Clarke 1993, McArdle and Anderson

2001). A number of more robust methods to compare

groups of multivariate sample units have been proposed

and several of these have now become very widely used

in ecology. They include the analysis of similarities

(ANOSIM; Clarke 1993, with .3700 citations according
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to ISI’s Web of Science), permutational multivariate

analysis of variance (PERMANOVA; Anderson 2001,

with .1600 citations; see also Pillar and Orlóci 1996,

Gower and Krzanowski 1999, Legendre and Anderson

1999, McArdle and Anderson 2001), and the Mantel test

(Mantel 1967, with .5200 citations; see also Mantel and

Valand 1970). Although the Mantel test is usually used

to compare two distance matrices, it can be used to

compare groups of samples by coding a contrast of

between- vs. within-group distances in a model matrix

(Appendix A). The particular form of this test that will

be examined in what follows is where the specific values

chosen for the model matrix yield an ANOSIM test on

the basis of the dissimilarities themselves, rather than on

their ranks (see Appendix A).

These methods all construct ANOVA-like test statis-

tics from a matrix of resemblances (distances, dissimi-

larities, or similarities) calculated among the sample

units, and obtain P values using random permutations

of observations among the groups, thereby assuming

only exchangeability for the one-way case. Any resem-

blance measure may be chosen as the basis of the

analysis (optionally after first transforming the data,

e.g., Clarke and Green 1988, Clarke 1993) to reflect

whatever qualities among the samples may be of greatest

interest (e.g., Legendre and Legendre 1998, Clarke et al.

2006, Anderson et al. 2011).

The test statistics inherent in resemblance-based

permutation tests were modeled to varying degrees on

Fisher’s F statistic used in univariate ANOVA (Snedecor

1934), specifically by contrasting some function of the

between-group vs. the within-group resemblances (e.g.,

Mantel), their squares (e.g., PERMANOVA), or their

ranks (e.g., ANOSIM). They are therefore generally

used and interpreted by practitioners for detection of

differences in the locations (centroids) of multivariate

groups. What is not widely appreciated, however, is that

they are actually testing different null hypotheses.

The null hypothesis tested by PERMANOVA is that,

under the assumption of exchangeability of the sample

units among the groups, H0: ‘‘the centroids of the

groups, as defined in the space of the chosen resem-

blance measure, are equivalent for all groups.’’ Thus, if

H0 were true, any observed differences among the

centroids in a given set of data will be similar in size

to what would be obtained under random allocation of

individual sample units to the groups (i.e., under

permutation). In contrast, the null hypothesis for the

Mantel test, as originally described, is: H0: ‘‘there is no

relationship between the inter-point distances in one

distance matrix and the inter-point distances in a second

distance matrix.’’ However, when the second distance

matrix contains codes that contrast between- vs. within-

group distances (see Appendix A for details), then the

null hypothesis (once again, under the assumption of

exchangeability) becomesH0: ‘‘the average of the within-

group distances is greater than or equal to the average of

the between-group distances.’’ This is deliberately

phrased as a one-tailed test here; the alternative

hypothesis being that the within-group distances are

smaller, on average, than the between-group distances.

The null hypothesis for the ANOSIM test is closely

related to this, namely H0: ‘‘the average of the ranks of

within-group distances is greater than or equal to the

average of the ranks of between-group distances,’’ where

a single ranking has been done across all inter-point

distances in the distance matrix and the smallest distance

(highest similarity) has a rank value of 1. For both the

ANOSIM test and the Mantel test (in this form), the

essence of what is being tested is the degree to which

there is greater clumping (smaller distances) among

samples within the same group compared to that

observed among samples in different groups. The null

hypotheses for ANOSIM or the Mantel test are

therefore more general (less specific) than the null

hypothesis tested by PERMANOVA. Thus, a significant

result using ANOSIM or the Mantel test could indicate

that the groups differ in their location, their dispersion,

or some other distributional quality, such as their degree

of skewness, non-sphericity (correlation structure), or

some combination of these things, any of which can

make the distribution of samples within a given group

distinguishable from the rest.

The relative sensitivity of resemblance-based permu-

tation tests to detect heterogeneity of multivariate

dispersions is unknown. One might expect that non-

parametric tests, especially those based on ranks, would

be more robust than their classical counterparts to

heterogeneity. In univariate analysis, however, a per-

mutation test for differences in means using the t

statistic is not necessarily more robust to heterogeneity

of variances among the groups than the classical

normal-theory t test (Boik 1987, Romano 1990, Hayes

1996, Manly and Francis 2002).

The comparative robustness of the classical

MANOVA test statistics to heterogeneity has been

studied to some extent and, generally, Pillai’s trace was

found to be the most robust (Olson 1974, 1979, Stevens

1979). More recently, Torres et al. (2010) measured the

size and power of PERMANOVA and a related test

described by Pillar and Orlóci (1996) by simulating

multivariate normal, lognormal, and uniform data in

one-way and two-way crossed ANOVA designs. Their

main purpose, however, was to investigate the properties

of different permutation methods for multivariate data.

Thus, the empirical behavior of resemblance-based

permutation tests in the presence of heterogeneity of

multivariate dispersions among groups, either by com-

parison to the classical MANOVA tests or to one

another, remains virtually unexplored.

Here, we describe a simulation study done to

investigate the empirical rates of rejection of H0 (at an

a priori chosen significance level of a ¼ 0.05) for

ANOSIM, the Mantel test, PERMANOVA, and (wher-

ever possible) classical MANOVA (Pillai’s trace; see

Pillai 1955), with a special focus on the effects of
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heterogeneity of multivariate dispersions. More com-

plete descriptions of the test statistics examined here and
their relationships with several other related methods,

such as multi-response permutation procedures (MRPP;
Mielke et al. 1981), are given in detail in Appendix A.

Comparisons were also done with PERMDISP, a
resemblance-based permutation test focused strictly on
the null hypothesis of homogeneity of multivariate

dispersions (Anderson 2006). Even if centroids differ,
PERMDISP explicitly tests only H0: ‘‘the average

within-group dispersion (measured by the average
distance to group centroid and as defined in the space

of the chosen resemblance measure), is equivalent
among the groups.’’

Increasing differences in dispersion among groups
were simulated under scenarios of changing sample

sizes, correlation structures, error distributions, numbers
of variables, and numbers of groups for balanced and

unbalanced one-way designs. The power of these tests to
detect real potential changes due to environmental

impact or natural large-scale biogeographic gradients
was also compared empirically under simulations based

on parameters derived from real ecological data sets.

METHODS

Rationale

We began with simple scenarios (multivariate normal
data with small numbers of variables and analyses based

on Euclidean distances) and progressed to more complex
and realistic scenarios (data simulated from truncated

multivariate lognormal or Poisson or negative binomial
distributions based on parameters for hundreds of

species estimated from real data sets). Initially, simula-
tion scenarios were done for normal and non-normal

data in Euclidean space (i.e., based on the Euclidean
distance measure and without any transformation) so

that known and deliberately set differences in the
parameters of the original variables would correspond

directly to known changes in the relative location,
dispersion, and correlation structure of points in the
multivariate space. These are essential first steps to

understanding the behavior of the test statistics with
respect to null hypotheses. Unfortunately, ecological

resemblance measures, such as Bray-Curtis or Jaccard,
do not maintain location and dispersion effects that may

be present in the Euclidean space of the original
variables (see Appendix B and Warton et al. 2012). It

was also particularly important to simulate scenarios
initially where the multivariate dispersions could be

altered independently of the centroids (e.g., using
multivariate normal distributions, or negative binomial

distributions altering only the dispersion parameter).
Ultimately, however, interest lies in comparing the

methods under more realistic scenarios; e.g., with non-
normal high-dimensional count data, and with tests

based on measures that focus on community composi-
tion, such as Bray-Curtis, chi-square, or Jaccard. The

list of potential alternative hypotheses regarding changes

in community structure that might be constructed to

examine power is too vast to be undertaken exhaustively

here. However, a suite of simulations were done to

provide meaningful comparisons for certain ecological

questions of very broad potential interest: namely, the

effects of pollution surrounding an oilfield (Gray et al.

1990) and large-scale latitudinal changes in beta

diversity (Ellingsen and Gray 2002).

Simulation methods

We used purpose-built code written in R for this study

(R Development Core Team 2012). All code is provided

in Supplement 1 and was checked with independent

software (e.g., PRIMER v6; Clarke and Gorley 2006,

Anderson et al. 2008). Simulations were designed to

investigate and highlight the essential empirical charac-

teristics of the tests and to compare and contrast their

sensitivity to heterogeneity. Each set of scenarios defined

in the sections below is designated as ‘‘Sim1’’, ‘‘Sim2’’,

and so on, to identify their corresponding R code files in

Supplement 1. A detailed outline and relevant param-

eters for simulation scenarios are provided in Table 1,

for reference. For each individual scenario within each

set, 1000 simulated data sets were generated under

known parameters. For each simulated data set, the test

statistic and associated P value was calculated for each

of ANOSIM, Mantel, and PERMANOVA using 999

random permutations on the basis of Euclidean

distances. For Pillai’s trace, a P value was calculated

using the classical F distribution approximation (Ap-

pendix A). The PERMDISP test for homogeneity of

dispersions (Anderson 2006) was also done for each

simulated data set, using distances to centroids, and with

P values obtained using 999 permutations of residuals

under a reduced model. The significance level to reject

the null hypothesis was set a priori at a ¼ 0.05 in all

cases, and the rejection rate of each test was calculated

as the proportion of P values (out of the 1000 simulated

data sets) that were less than or equal to a. Note that we

deliberately do not refer to rejection rates as ‘‘Type I

error’’ for any of these scenarios, because the tests being

examined here do differ fundamentally in their under-

lying null hypothesis. The aim here was to uncover the

relative sensitivity of the tests to specific known

distributional differences between groups. Standard

errors on each empirical rejection rate were calculated

under the binomial distribution, using the function

prop.test in R.

Simulation scenarios

Balanced designs (Sim1).—The first set of simulations

examined the effect of increasing sample size and

increasing degree of heterogeneity for balanced designs

in Euclidean space for either multivariate normal or

Poisson/negative binomial data. Multivariate normal

(MVN) data for g ¼ 2 groups and p ¼ 2 independent

variables were generated where the means in both

November 2013 559BEHAVIOR OF MULTIVARIATE TESTS

 15577015, 2013, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/12-2010.1 by E

pfl L
ibrary B

ibliothèque, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



groups had a common value of l ¼ 10 and the

covariance matrix in both groups was initially

R1 ¼ R2 ¼
1 0

0 1

� �
:

Heterogeneity was then introduced and gradually

increased by introducing scalar multipliers, m1 for R1

and m2 for R2. For clarity in what follows, we define the

ratio of these multipliers simply as m¼m2/m1. Thus, as

R1 and R2 are identity matrices, m is simply the ratio of

the variances for any variable in group 2 vs. group 1

(i.e., r2
2/r

2
1). A set of simulations was done for each of m

¼ f1, 2, 5, 10g. The above set was repeated for each of

several sample sizes (gradually increasing) in a balanced

design for two groups: n1¼ n2¼ f4, 6, 9, 12, 18, 24g. To
investigate the effect of increasing numbers of variables,

all of the above was done for p ¼ f2, 3, 5, 10g, while
always maintaining a value of l ¼ 10 for all variables,

covariance values of 0 (thus, independence) among

variables, and the identity matrix (variances¼ 1) for R1,

while increasing n and m, as described.

Simulations were also done on the basis of the Poisson

and negative binomial (NB) distributions. For these

discrete distributions, often used to model count data,

TABLE 1. Detailed outline of simulation scenarios conducted for the study, indicated as Sim1–Sim4.

Name Distr.

No.
variables,

p

No.
groups,

g Sample sizes
Variances/correlation

structure

Balanced designs, n1 ¼ n2, uncorrelated data (q1 ¼ q2 ¼ 0)

Sim1a�1d Norm f2, 3, 5, 10g 2 n1 ¼ n2 ¼ f4, 6, 9, 12, 18, 24g m ¼ f1, 2, 5, 10g
Sim1e Pois/NB 2 2 n1 ¼ n2 ¼ 12 h1 ¼ 0, h2 ¼ f0, 0.1, 0.4, 0.9g
Sim1f–h Pois/NB f3, 5, 10g 2 n1 ¼ n2 ¼ 12 h1 ¼ 0, h2 ¼ f0, 0.1g

Unbalanced designs, n2 � n1, uncorrelated data (q1 ¼ q2 ¼ 0)

Sim2a–d Norm f2, 3, 5, 10g 2 n1 ¼ f3, 4, 6, 8, 12, 16g, nr ¼ 2;
n1 ¼ f3, 4, 5, 6, 9, 12g, nr ¼ 3;
n1 ¼ f3, 4, 5, 6, 8g, nr ¼ 5

m ¼ f1, 2, 5, 10g;
m ¼ f0.5, 0.2, 0.1g

Sim2e Pois/NB 2 2 n1 ¼ 8, n2 ¼ 16, nr ¼ 2 h1 ¼ f0.1, 0.4, 0.9g, h2 ¼ 0;
h1 ¼ 0, h2 ¼ f0, 0.1, 0.4, 0.9g

Sim2f–h Pois/NB f3, 5, 10g 2 n1 ¼ 8, n2 ¼ 16, nr ¼ 2 h1 ¼ 0.1, h2 ¼ 0; h1 ¼ 0, h2 ¼ 0.1

Changes in correlation structure, constant variances (m ¼ 1)

Sim3 Norm 2 2 n1 ¼ n2 ¼ f4, 6, 9, 12, 18, 24g;
n1 ¼ f3, 4, 6, 8, 12, 16g, nr ¼ 2;
n1 ¼ f3, 4, 5, 6, 9, 12g, nr ¼ 3;
n1 ¼ f3, 4, 5, 6, 8g, nr ¼ 5

q1 ¼ 0, q2 ¼ f0, 0.6, 0.9g;
q1 ¼ q2 ¼ f0.6, 0.9g;
q1:q2 ¼ f�0.6:0.6, �0.9:0.9g

Changes in numbers of groups, constant total sample size (N )

Sim4a Norm 2 2 ni ¼ 30, N ¼ 60 r2
1 ¼ r2

2 ¼ 1;
r2

1 ¼ 1, r2
2 ¼ 5

Sim4b Norm 2 4 ni ¼ 15, N ¼ 60 r2
1;2;3;4 ¼ 1, all small;

r2
1;2;3 ¼ 1, r2

4 ¼ 5, one large;

r2
1;2 ¼ 1, r2

3;4 ¼ 5, half large;

r2
1 ¼ 1, r2

2;3;4 ¼ 5, one small
Sim4c Norm 2 6 ni ¼ 10, N ¼ 60 r2

1�6 ¼ 1, all small;

r2
1�5 ¼ 1, r2

6 ¼ 5, one large;

r2
1�3 ¼ 1, r2

4�6 ¼ 5, half large;

r2
1 ¼ 1, r2

2�6 ¼ 5, one small
Sim4d Norm 2 10 ni ¼ 6, N ¼ 60 r2

1�10 ¼ 1, all small;

r2
1�9 ¼ 1, r2

10 ¼ 5, one large;

r2
1�7 ¼ 1, r2

8�10 ¼ 5;

r2
1�4 ¼ 1, r2

5�10 ¼ 5, half large;

r2
1�3 ¼ 1, r2

4�10 ¼ 5;

r2
1 ¼ 1, r2

2�10 ¼ 5, one small

Changes in numbers of groups, constant group sample size (ni )

Sim4e Norm 2 2 ni ¼ 6, N ¼ 12 as in Sim4a
Sim4f Norm 2 4 ni ¼ 6, N ¼ 24 as in Sim4b
Sim4g Norm 2 6 ni ¼ 6, N ¼ 36 as in Sim4c
Sim4d Norm 2 10 ni ¼ 6, N ¼ 60 as in Sim4d

Notes: For each scenario, 1000 data sets were simulated, and P values for ANOSIM, Mantel, and PERMANOVA were obtained
using 999 permutations on the basis of Euclidean distances. Distributions (Distr.) were Normal (Norm), or Poisson/Negative
Binomial (Pois/NB), as specified. Variables are: p, the number of variables; g, the number of groups; N, the total number of
samples, while, for the ith individual group, ni is the the sample size; qi, the correlation between variables; r2

i , the variance; and hi,
the dispersion parameter for all variables in group i. For two groups, m equals the ratio of two variances (r2

2/r
2
1), and nr equals the

ratio of sample sizes (n2/n1).

MARTI J. ANDERSON AND DANIEL C. I. WALSH560 Ecological Monographs
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the variance is known to increase with the mean. More

particularly, for the NB distribution having mean l, the
variance is r2 ¼ l þ hl2 , where h is the aggregation

parameter (also referred to as the dispersion parameter).

The NB distribution reduces to the Poisson distribution

when h ¼ 0 and r2 ¼ l. We simulated non-normal

negative binomial count data for p¼f2, 3, 5, 10g, and l
¼ 10 and h1 ¼ 0 for all variables, while gradually

introducing heterogeneity in group 2 by changing the

value of h2 for all variables in that group to h2 ¼
f0, 0.1, 0.4, 0.9g. McArdle and Anderson (2004) have

discussed how the degree of aggregation (as measured by

h) can shift in different habitats for organisms of the

same species in natural systems.

Unbalanced designs (Sim2).—The second set of

simulations was designed to examine the effects of

heterogeneity for unbalanced designs. All of the

scenarios and parameters remained as described above

for Sim1, except for the sample sizes, which could differ

in the two groups. We wished to distinguish the effect of

a simple increase in the total sample size (N¼ n1þn2) vs.

a change in the degree of imbalance in the sample sizes

between groups. The sample sizes were altered such that

n2 � n1 and the ratio was n2/n1 ¼ f1, 2, 3, 5g. We

generated data, in each case, where the group with the

larger sample size (n2) also had the larger variance,

putting m ¼ f1, 2, 5, 10g as in Sim1. We also simulated

data where the group with the smaller sample size (n1)

had the larger variance, so putting m ¼ f0.5, 0.2, 0.1g.
Correlation structure (Sim3).—The third set of

simulations was designed to study the effects of

differences in correlation structure among the variables

across different groups. Here, the variances were kept

constant across groups (equal to one for all variables),

but the degree of difference in the correlation between

variables was altered. First, we considered scenarios of

two groups where the first group had no correlation

between the variables (q1 ¼ 0 for all pairs of variables),

so was spherical in shape, while the second group had an

increasing degree of correlation among all variables,

namely, q2 ¼ f0, 0.6, 0.9g. We then considered the

situation where the two groups had a common nonzero

correlation structure (i.e., q1¼ q2¼ f0.6, 0.9g), but then
increased the differences in the degree and direction of

correlation between the two groups, that is, the

correlations between the variables for group 1 vs. group

2, respectively, were q1:q2 ¼ f0:0,�0.6:0.6,�0.9:0.9g.
These were done as for Sim1 and Sim2 for balanced and

unbalanced designs and p ¼ 2 variables.

Numbers of groups (Sim4).—The fourth set of

simulations examined the effect of heterogeneity in the

context of increasing numbers of a priori groups (as

Sim1, Sim2, and Sim3 treated only the case of g ¼ 2).

Two different kinds of situations of increasing group

numbers were considered. First, a fixed total number of

samples (N ) can be partitioned into more and more

groups (increasing g), but with smaller and smaller

numbers of samples per group (n). For this, we set N ¼

60 and for g ¼ f2, 4, 6, 10g; this yielded n ¼
f30, 15, 10, 6g, respectively. Second, the sample size

per group (n) can be held constant while more groups

(having the same sample size) are added, increasing both

g and N. For this, we used n ¼ 6 and g ¼ f2, 4, 6, 10g,
which yielded N ¼ f12, 24, 36, 60g, respectively. Next,

for each of these situations, four different kinds of

heterogeneity were simulated. All of the variables within

a given group either had variances of 1 (small) or 5

(large). For a given number of groups and sample size,

we did simulations where: (1) all groups had small

variances (equal dispersions, a baseline reference); (2)

one group had a large variance and the others were

small; (3) one group had a small variance and the others

were large; and (4) half of the groups had large variances

and half of them had small variances.

Simulations based on real data

We simulated data from two ecological data sets

(referred to as ‘‘Ekofisk’’ and ‘‘Norwegian continental

shelf’’; discussed in the following sections), available as

examples in the PRIMER v6 computer package (Clarke

and Gorley 2006) with the PERMANOVAþ add-on

(Anderson et al. 2008). A full description of the methods

used for simulating data and calculating power from

these data sets is given in Appendix C. Source data files

and R code for both the estimation of parameters and

the simulations are provided in Supplement 2. For all

simulations based on real data sets, we consider the

rejection rates to be empirical measures of the relative

power of these tests to detect genuine differences

between groups whenever any of the underlying

parameters differed between those groups. We recognize

that there is an infinite number of ways that simulations

could be done to measure power and these simulations

are not intended to be exhaustive. They do, however,

allow some preliminary insights regarding the behavior

of these tests with more realistic data structures and

dissimilarity measures.

Ekofisk.—The first data set, exemplifying changes in

species’ abundances in response to pollution, comes

from a study of marine soft-sediment benthic commu-

nities (173 taxa) surrounding the Ekofisk oil platform in

the North Sea (Gray et al. 1990). There were 39 sites

classified into four groups (A, B, C, and D) that

occurred along a gradient of increasing proximity to the

oil platform (Gray et al. 1990, Clarke and Gorley 2006).

For each pairwise comparison of groups along the

gradient (A vs. B, B vs. C, and C vs. D), power curves

for each of the resemblance-based tests were generated

on the basis of each of three different distance measures:

Euclidean distances on log(y þ 1)-transformed abun-

dances, chi-square distances, and Bray-Curtis distances

on fourth-root transformed abundances. Three different

distributional approaches were used to simulate abun-

dance data, using parameters estimated from the real

data sets: (1) species’ values were drawn from a

multivariate lognormal distribution (MVLN), with

November 2013 561BEHAVIOR OF MULTIVARIATE TESTS
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values truncated to integers; (2) species’ values were

drawn independently from either a Poisson or a negative

binomial distribution (Poisson/NB) depending on their

degree of aggregation (dispersion parameter h), which
for a given species was held constant across the groups;

or (3) the same approach as (2) was used, but the value

of h was estimated separately for each group, so

individual species’ dispersions varied among the groups.

Norwegian continental shelf.—The second data set

exemplifies changes in species’ composition and beta

diversity of benthic soft-sediment macrofauna (809 taxa)

along a large-scale biogeographic gradient from 101 sites

sampled across five areas along the Norwegian conti-

nental shelf, spanning 158 of latitude from the North Sea

into the Arctic (Ellingsen and Gray 2002). We simulated

presence/absence data by randomly drawing each

species as a Bernoulli binary (0, 1) random variable

with probability of occurrence set equal to parameters

estimated from the data. Power curves for each of the

resemblance-based tests were generated for pairwise

comparisons between each of the areas along the

continuum from south to north (i.e., 1 vs. 2, 2 vs. 3, 3

vs. 4, and 4 vs. 5) on the basis of the Jaccard

resemblance measure.

RESULTS

The full set of simulation results obtained under all

scenarios (Sim1–Sim4) is provided in Supplement 3. The

full set of simulation results obtained on the basis of real

data sets (Ekofisk and Norwegian continental shelf ) is

provided in Supplement 4. Key findings are summarized

in the following.

Simulation scenarios

Balanced designs (Sim1).—With uncorrelated bivar-

iate normal balanced data and two groups in Euclidean

space, increasing heterogeneity of dispersions yielded

substantial increases in the rejection rates for both

ANOSIM and the Mantel test (Table 2, Fig. 1a).

Rejection rates for both of these tests increased with

TABLE 2. Rejection rates (out of 1000 simulations) for each of five different multivariate tests for
data generated under either a multivariate normal (MVN) or Poisson/negative binomial (NB)
distribution in Euclidean space for g ¼ 2 groups and p ¼ 2 or 10 variables, as indicated.

Test

MVN Poisson/NB

p ¼ 2 p ¼ 10 p ¼ 2 p ¼ 10

a) Balanced and homogeneous (m ¼ 1, n1 ¼ n2 ¼ 12)

ANOSIM 0.051 0.063 0.052 0.053
Mantel 0.047 0.060 0.050 0.050
PERMANOVA 0.050 0.056 0.049 0.055
Pillai 0.053 0.042 0.046 0.044
PERMDISP 0.046 0.046 0.064 0.050

b) Balanced and heterogeneous (m ¼ 2, n1 ¼ n2 ¼ 12)

ANOSIM 0.129 0.335 0.104 0.306
Mantel 0.082 0.164 0.074 0.152
PERMANOVA 0.047 0.053 0.055 0.059
Pillai 0.057 0.058 0.054 0.071
PERMDISP 0.291 0.919 0.266 0.875

c) Unbalanced and homogeneous (m ¼ 1, n1 ¼ 8, n2 ¼ 16)

ANOSIM 0.040 0.044 0.041 0.057
Mantel 0.041 0.045 0.045 0.055
PERMANOVA 0.053 0.059 0.041 0.044
Pillai 0.041 0.052 0.052 0.051
PERMDISP 0.049 0.062 0.048 0.066

d) Unbalanced and heterogeneous (m ¼ 2, n1 ¼ 8, n2 ¼ 16)

ANOSIM 0.004 0.000 0.013 0.000
Mantel 0.003 0.000 0.012 0.000
PERMANOVA 0.019 0.009 0.033 0.009
Pillai 0.027 0.028 0.027 0.026
PERMDISP 0.275 0.912 0.232 0.868

e) Unbalanced and heterogeneous (m ¼ 0.5, n1 ¼ 8, n2 ¼ 16)

ANOSIM 0.348 0.913 0.352 0.889
Mantel 0.358 0.908 0.359 0.879
PERMANOVA 0.090 0.150 0.101 0.128
Pillai 0.088 0.133 0.092 0.117
PERMDISP 0.273 0.826 0.262 0.760

Notes: Five different simulation scenarios are shown here: (a) equal sample sizes and
homogeneity; (b) equal sample sizes and heterogeneity; (c) unequal sample sizes and homogeneity;
(d) unequal sample sizes and heterogeneity with greater dispersion in the group with more samples;
and (e) unequal sample sizes and heterogeneity with greater dispersion in the group with fewer
samples.
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total sample size (Fig. 1a) and with increases in the

number of variables, and ANOSIM also had greater

rejection rates than the Mantel test (Fig. 1a, Table 2). In

contrast, PERMANOVA and Pillai’s trace remained

unaffected by heterogeneity for balanced designs (Fig.

1a, Table 2). Highly similar results were obtained when

the negative binomial distribution was used, although

Pillai’s trace showed modest inflated type I error under

severe heterogeneity (e.g., m ¼ 10; Table 3a, c).

Unbalanced designs (Sim2).—For unbalanced de-

signs, all tests were liberal when the large dispersion

occurred in the group with the smaller sample size (Fig.

1b, Tables 2 and 3), but especially ANOSIM and the

Mantel test. Rejection rates for PERMANOVA and

Pillai’s trace were constant for a given ratio of sample

sizes in the two groups (e.g., leveling off at ,0.20 in Fig.

1b; see also Supplement 3), whereas for ANOSIM and

the Mantel test, rejection rates increased with increases

in the total sample size.

In contrast, all tests, and especially ANOSIM and the

Mantel test, were overly conservative (with rejection

rates ,0.05) when the group with the larger sample size

also had the greater dispersion (Fig. 1c, Tables 2 and 3).

This conservatism became worse with increasing num-

bers of variables (Tables 2 and 3), increasing disparity in

the sample sizes, or increasing heterogeneity (Supple-

ment 3). Regardless of which group had the greater

dispersion, however, PERMDISP was able to detect this

heterogeneity equally reliably (compare, e.g., PERM-

DISP vs. either ANOSIM or the Mantel test when m ¼
0.1, then when m ¼ 10 in Table 3).

Correlation structure (Sim 3).—Both ANOSIM and

the Mantel test (albeit to a lesser extent) were sensitive to

differences in correlation structure between groups and

FIG. 1. Empirical rejection rates (6SE, a ¼ 0.05) for each of four different test statistics with increasing sample size under
heterogeneity for 1000 simulated data sets from a multivariate normal distribution with p¼ 2 variables, g¼ 2 groups, and (a) equal
sample sizes, m¼ 5; (b) unequal sample sizes (n2/n1¼ 2), with greater variance in the smaller group (m¼ 0.2); (c) unequal sample
sizes (n2/n1¼2), with greater variance in the larger group (m¼5); and (d) equal sample sizes and variances (m¼1), but groups have
different correlation structures, with q1¼0.9 and q2¼�0.9. The significance level of a¼0.05 is shown as a dashed line, and the 95%
confidence interval for a test whose true rejection rate is equal to a is shown with dotted lines. Also, for the ith individual group, ni
is the sample size, qi is the correlation between pairs of variables for all variables in group i, and m is the ratio of the variances in the
two groups.
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their rejection rates increased with increasing sample

sizes (Fig. 1d). Rejection rates were as high as 100% for

ANOSIM when one group had strong negative corre-

lation structure, while the other had strong positive

correlation structure (Fig. 1d). Pillai’s trace was

unaffected by heterogeneity in correlation structure for

balanced designs, but showed increased rejection rates

(up to about 30%) for unbalanced designs (Supplement

3). PERMANOVA, however, remained completely

unaffected by differences in correlation structure (Fig.

1d; Supplement 3).

Numbers of groups (Sim 4).—For ANOSIM, any

form of heterogeneity among multiple groups increased

rejection rates (Fig. 2). Having half of the groups with

large dispersions and half with small dispersions resulted

in the highest rejection rates (dark triangles, left-hand

panels in Fig. 2), followed first by the situation where

one group had large dispersion relative to the others

(white squares), and then by the situation where one

group had small dispersion relative to the others (white

triangles). Under the ‘‘half large’’ scenario for ANO-

SIM, when the total sample size remained constant

(constant N and decreasing n; top left-hand panel of Fig.

2), rejection rates decreased with increasing group

number, whereas when the sample sizes per group

remained constant (increasing N and constant n; bottom

left-hand panel of Fig. 2), rejection rates increased as

more groups were added. Very similar results (but with

lower average rejection rates) were demonstrated by the

Mantel test (Supplement 3). The power of PERMDISP

to detect heterogeneity under these scenarios was greater

than that of ANOSIM, but in other ways, patterns were

similar (Fig. 2).

In contrast, PERMANOVA was not sensitive to

heterogeneity under any of these scenarios, but slightly

increased rejection rates (between 0.05 and 0.10) were

obtained when one group had large dispersion relative

to the others (Fig. 2). The results for Pillai’s trace

mirrored those for PERMANOVA (see Supplement 3).

Simulations based on real data

Ekofisk.—There were only slight differences in power

among methods in analyses of simulations based on the

Ekofisk data set (Fig. 3; Appendix D). The method

having the greatest empirical power also depended on

the distribution upon which the simulations were based.

When data were generated using the MVLN distribu-

tion, then the Mantel test tended to have the greatest

TABLE 3. Rejection rates (out of 1000 simulations) for each of five different multivariate tests,
including one designed specifically to detect differences in dispersion among groups
(PERMDISP), for data generated under a multivariate normal or negative binomial distribution
in Euclidean space with g ¼ 2 groups and p ¼ 2 variables.

Test and m value PERMDISP ANOSIM Mantel PERMANOVA Pillai

a) MVN, balanced

1.0 0.046 0.051 0.047 0.050 0.053
2.0 0.291 0.129 0.082 0.047 0.057
5.0 0.921 0.665 0.339 0.054 0.062
10.0 0.994 0.948 0.744 0.064 0.075

b) MVN, unbalanced

0.1 0.986 0.995 0.996 0.171 0.187
0.2 0.871 0.903 0.910 0.152 0.160
0.5 0.273 0.348 0.358 0.090 0.088
1.0 0.049 0.040 0.041 0.053 0.041
2.0 0.275 0.004 0.003 0.019 0.027
5.0 0.835 0.000 0.000 0.011 0.016
10.0 0.980 0.002 0.000 0.008 0.012

c) Negative binomial, balanced

1.0 0.064 0.052 0.050 0.049 0.046
2.0 0.266 0.104 0.074 0.055 0.054
5.0 0.808 0.621 0.320 0.049 0.067
10.0 0.968 0.931 0.681 0.070 0.117

d) Negative binomial, unbalanced

0.1 0.923 0.989 0.991 0.221 0.276
0.2 0.780 0.892 0.892 0.177 0.181
0.5 0.262 0.359 0.359 0.101 0.092
1.0 0.048 0.045 0.045 0.041 0.052
2.0 0.232 0.012 0.012 0.033 0.027
5.0 0.637 0.001 0.001 0.018 0.026
10.0 0.767 0.005 0.005 0.015 0.036

Notes: Two different simulation scenarios are shown here: (a) equal sample sizes (n1¼ n2¼ 12);
and (b) unequal sample sizes (n1 ¼ 8, n2 ¼ 16). Values of m indicate when dispersions were
homogeneous (m¼ 1); when heterogeneity occurred (m 6¼ 1) and, for unbalanced designs, whether
there was greater dispersion in the group with more samples (m . 1); or greater dispersion in the
group with fewer samples (m , 1).
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power, followed by ANOSIM, then PERMANOVA

(Appendix D). In contrast, when data were generated

using a suite of negative binomial variables and Poisson

variables, either with or without changes in the

dispersion parameters among groups, then PERMA-

NOVA generally had the greatest power, followed by

the Mantel test, then ANOSIM (Fig. 3; Appendix D).

These general patterns were broadly consistent for

each pair of groups being compared (A vs. B, B vs. C,

and C vs. D; see Appendix D and Supplement 4).

Simultaneous estimation of empirical power using

PERMDISP showed that for some pairwise compari-

sons, the change in location was the dominant feature of

group differences (e.g., B vs. C), whereas for others,

substantial differences in dispersion occurred as well

(e.g., C vs. D). Interestingly, when simulated differences

very clearly had dispersion as well as location effects

(e.g., see the PERMDISP results for the comparison of

C vs. D using Poisson/NB distributions with varying

dispersion parameter), PERMANOVA had greater

power than either Mantel or ANOSIM (Appendix D,

Supplement 4).

The choice of transformation and resemblance

measure also affected power. For some of the groups

being compared from the Ekofisk data (e.g., A vs. B),

analyses based on Euclidean distances of log(y þ 1)-

transformed values had the greatest power, while for

others (e.g., B vs. C), analyses based on chi-square

distances had the greatest power (Fig. 3; Appendix D,

Supplement 4). The rank-order differences in power

between the different resemblance measures investigated

here tended to remain consistent, however, for a given

pair of groups being compared, regardless of which

distributions were used to simulate the underlying

variables (Appendix D, Supplement 4).

Norwegian continental shelf.—PERMANOVA had

much greater power than either Mantel or ANOSIM

to detect changes in composition in comparisons of area

1 vs. 2 and also area 2 vs. 3 (Fig. 4; Appendix E). For

both of these comparisons, the MDS plot and PERM-

DISP revealed a substantial change in dispersion, as well

FIG. 2. Empirical rejection rates (6SE, a ¼ 0.05) for each of three different tests with increasing numbers of groups (g), for
balanced data under four different dispersion scenarios (all small, one large, half large/half small [‘‘half large’’], or one small), and
where either the total sample size (N ) remained constant (top panels), or the number of samples per group (n) remained constant
(bottom panels), as calculated from 1000 simulated data sets from a multivariate normal distribution with p¼ 2 variables. Dashed
and dotted lines are as described for Fig. 1.

November 2013 565BEHAVIOR OF MULTIVARIATE TESTS
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as location, of the multivariate data cloud in Jaccard

space (see Anderson et al. 2006). The Mantel test, in

turn, was more powerful than ANOSIM to detect these

compositional differences. PERMANOVA was also

more powerful to detect differences for area 4 vs. 5

(Appendix E), while, in contrast, Mantel and ANOSIM

had slightly better power than PERMANOVA for the

comparison of area 3 vs. 4, although the disparity in

FIG. 3. Empirical power of four multivariate tests to detect changes between group B (1–3.5 km from the center of the oil-
drilling activity, nB ¼ 12) and group C (0.25–1 km from the center of the oil-drilling activity, nC ¼ 10) for data simulated using
parameters for individual species of soft-sediment benthic macrofauna estimated from the Ekofisk oilfield data sets ( p ¼ 173
species). The distributions used to simulate the data were a mixture of independent variables having either Poisson or negative
binomial distributions with dispersion parameters that varied between the two groups (see Appendix C for more details). The
resulting counts were analyzed using chi-square distances (left), Euclidean distances of log(yþ 1)-transformed values (middle), or
Bray-Curtis resemblances on fourth-root transformed values (right). Results comparing other pairs of groups for the Ekofisk data
set and based on other distributions for underlying variables are provided in Appendix D.

FIG. 4. Empirical power of four multivariate tests to detect changes in community structure and beta diversity of benthic soft-
sediment macrofauna (809 species) between area 2 and area 3 (n2¼21, n3¼ 25), along a biogeographic transition on the Norwegian
continental shelf. Analyses were based on Jaccard resemblances of presence/absence data from Bernoulli(0, 1) random draws,
where probabilities were estimated from proportional occurrences of species in the data set for each group (see Appendix C for
further simulation details). Results comparing other pairs of areas for the Norwegian continental shelf data set are given in
Appendix E.

MARTI J. ANDERSON AND DANIEL C. I. WALSH566 Ecological Monographs
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power among methods was not so large for these two

sets of comparisons (Fig. 4, Appendix E).

In some cases, ANOSIM and the Mantel test

demonstrated the unusual behavior of being initially

highly conservative, generating power curves that were

not monotonically increasing. More specifically, their

power to detect initial (smaller) differences in frequen-

cies of occurrences of species between groups actually

sunk down to substantially below the 0.05 significance

level, even effectively dropping down to zero (Fig. 4;

Appendix E). This odd behavior was more pronounced

for ANOSIM than for Mantel, and occurred primarily

under scenarios where the increase in dispersion was

accompanied by an increase in the sample size (e.g., n1¼
16, n2¼ 21). PERMANOVA, in contrast, demonstrated

no such effect, generating power curves that were both

monotonic and quickly responsive to quite small

changes in compositional frequencies between groups

(Fig. 4; Appendix E).

DISCUSSION

After the original description of the F statistic (Fisher

1925, Snedecor 1934), it was some time before the

behavior of the univariate F test in ANOVA for real

data became better understood by reference to its

performance under potential violations of its assump-

tions (Pearson 1931, Cochran 1947, Box 1953, 1954) or

by comparison with nonparametric alternatives devel-

oped later (e.g., Feir-Walsh and Toothaker 1974,

Tomarken and Serlin 1986). We are in a similar

situation with respect to our current knowledge of the

multivariate resemblance-based permutation tests. Al-

though ANOSIM, PERMANOVA, and the Mantel test

are now very widely used in ecology and other

disciplines, this is the first study, to our knowledge,

which focuses on the effects of heterogeneity of

dispersions on these multivariate resemblance-based

tests.

Effects of heterogeneity for balanced designs

Given that the ANOSIM R statistic is described as a

test of the very general null hypothesis of H0: ‘‘no

differences among the groups,’’ and the fact that

Clarke’s (1993: 131) original description states that the

test ‘‘will have some power to detect’’ this kind of

change, referring to differences in dispersion, researchers

have so far been very wise to interpret significant R

statistics simply as providing evidence for ‘‘a difference’’

among groups, but without honing their inferences

down any further in terms of differences in locations,

dispersions, the shape of the data cloud, or perhaps all

of these things, within a given context. Indeed, the

fundamental idea that the true underlying null hypoth-

esis in a statistical comparison of two (or more) sampled

groups has (at least) two parts (equality of means and

equality of variances) can be traced back to the work of

Fisher (1939).

One might expect the ANOSIM test to be more robust

to heterogeneity than either PERMANOVA or the

Mantel test, as it not only uses a permutation algorithm,

but also reduces the distance matrix down to ranks.

Surprisingly, this did not occur. In fact, it is clear that

the construction of the test statistic itself makes it a kind

of ‘‘omnibus’’ test, being much more sensitive to

heterogeneity of dispersions and differences in correla-

tion structure among groups than was PERMANOVA.

The Mantel test has a broadly similar construction, and

although it was not as severely affected by heterogeneity

as the ANOSIM test under any scenario examined here,

it did follow all of the general patterns observed for

ANOSIM in its essential behavior.

Why does heterogeneity lead to small P values

for ANOSIM?

The value of the R statistic in ANOSIM measures

directly the degree of distinctiveness of groups, regard-

less of sample size (Clarke 1993). Under a scenario of

one group having larger dispersions than another, when

centroids are equal, the value of R does not necessarily

get very large. For example, in Fig. 5, a plot is shown of

a single set of simulated bivariate normal data, where

the population variances for the two variables in group 2

are twice those in group 1. The value of the PERMA-

NOVA pseudo-F and ANOSIM R statistics for this

particular set of data are each shown to the right of this,

placed within the context of their distributions under

permutation. Note that even though the value of R is

quite small for the simulated data (R ¼ 0.0963), the

distribution of the R statistic under permutation has

been shifted to the left, thus resulting in a small P value

for the ANOSIM test. Under repeated simulation of

such data sets, the distribution of the P values for

ANOSIM is therefore not uniform. Instead, many are

small, and the percentage of P values less than a¼ 0.05

(the rejection rate) is around 24% (Fig. 5). In contrast,

the pseudo-F statistic is quite robust to this heterogene-

ity, showing a large P value for this particular simulated

data set (P ¼ 0.725), as well as a quite uniform

distribution of P values for the full set of simulations

and a rejection rate of ;4% (Fig. 5).

The reason that the ANOSIM test yields a significant

result (a small P value) is not because the observed

value of R is large, but rather because the distribution

of R(p) under permutation is shifted to the left,

including a large number of negative values (Fig. 5).

Negative values of R indicate that the average of the

ranks of within-group dissimilarities is greater than the

average of the ranks of between-group dissimilarities

(e.g., Chapman and Underwood 1999). This arises

under permutation for groups with heterogeneous

dispersions because, if there is greater clumping of

samples in (say) one or more of the groups in the

original data, then under permutation the within-group

dissimilarity values will look larger (on average) and

the between-group dissimilarities will look smaller (on

November 2013 567BEHAVIOR OF MULTIVARIATE TESTS
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average) compared to what was originally observed, so

the permutation distribution of R(p) shifts to the left

relative to the original R value.

If a statistically significant result is accompanied by a

value of R that is not very large, this could be a signal

that the difference is primarily a difference in dispersion.

For example, under the scenario depicted in Fig. 5, the

median value of R obtained under simulation was 0.021

(with 0.025 and 0.975 quantile values for R of �0.023
and 0.115, respectively). A statistically significant, yet

small, value of R is no guarantee, however, that

differences are indeed differences in dispersion and not

(small) differences in location, whatever pattern might

be evidenced on an accompanying MDS (or other)

ordination plot. In practice, unfortunately, there is no

way to unravel location vs. dispersion effects using

ANOSIM (or, for that matter, Mantel).

The increased rejection rates of ANOSIM (or Mantel)

caused by differences in the degree or direction of

correlation structure among groups was unexpected.

The detection of ‘‘distinctiveness’’ of groups purely on

the basis that the groups have different shapes is

something that is (once again) likely to be caused by

the distribution of R(p) under permutation being tugged

to the left, rather than the value of R being large, per se.

In other words, strong correlations generate a ‘‘clump-

ing’’ effect into distinct nonspherical shapes, which will

be seen by ANOSIM or Mantel in much the same way as

differences in dispersions. More specifically, under

permutation, the within-group dispersions will look

large relative to their values in the original data set,

shifting R(p) to the left.

Robustness of PERMANOVA for balanced designs

Importantly, the response of either ANOSIM or

Mantel to increases in sample size was to cause

increasing rejection rates of the null hypothesis under

a given scenario of heterogeneity. This is because more

samples provide greater power to detect this type of

change for these omnibus tests. An increase in rejection

rates under heterogeneity with increasing sample size is

also seen in the behavior of the univariate rank-based

Kruskal-Wallis test (Feir-Walsh and Toothaker 1974).

This effect did not occur for either Pillai’s trace or

FIG. 5. (a) Scatterplot of a single set of simulated data from a bivariate normal distribution ( p¼ 2) for each of g¼ 2 groups
having equal sample sizes (n1 ¼ n2 ¼ 24), but different dispersions (m ¼ 2), along with the test statistics and permutation
distributions for (b) the PERMANOVA pseudo-F statistic and (c) the ANOSIM R statistic. Also shown are the distributions of P
values and associated rejection rates obtained for (d) PERMANOVA and (e) ANOSIM for 1000 such data sets.

MARTI J. ANDERSON AND DANIEL C. I. WALSH568 Ecological Monographs
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PERMANOVA. This is because, by design, PERMA-

NOVA’s pseudo-F and Pillai’s trace statistics focus

purely on measuring differences in locations (centroids).

Thus, as in the famous reference to the univariate

ANOVA F statistic being like an ‘‘ocean liner’’ (Box

1953), these approaches, too (for balanced designs), will

not be easily rocked by differences in other ancillary

quantities (like dispersions) that they are not designed to

test.

When there were more than two groups, ANOSIM

showed greater sensitivity to heterogeneity when half of

the groups had large dispersions and half had small

dispersions. In contrast, PERMANOVA and Pillai’s

trace were more sensitive to heterogeneity (albeit only

mildly, as these were balanced designs) when it occurred

in the form of one group being substantially more

dispersed than the others. The latter result mirrors what

has been found for univariate ANOVA (Box 1953,

1954). This led to the rationale behind the common use

in ecology (and beyond) of Cochran’s test for homoge-

neity (Cochran 1941, 1951), a statistic consisting of the

ratio of the largest estimated within-group variance vs.

the sum of the individual estimated within-group

variances. Thus, Underwood (1981, 1997) recommended

the use of Cochran’s test for homogeneity of variances

prior to implementing a univariate ANOVA test. A

multivariate resemblance-based analogue to Cochran’s

test has not yet been developed, although this would be a

useful topic for future research. Nevertheless, PERMA-

NOVA was overall still quite robust to this form of

FIG. 5. Continued.
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heterogeneity; for example, even with large numbers of

groups (g¼ 10) and with one group having much larger

dispersion than the others, the rejection rate only

increased to around 0.10 (Fig. 2).

The relative robustness of PERMANOVA and Pillai’s

trace to heterogeneity for balanced designs mirrors

similar original results obtained for the F statistic in

univariate ANOVA (Horsnell 1953, Box 1954, Glass et

al. 1972), as well as the results obtained by Olson (1974)

indicating that Pillai’s trace was more robust to

heterogeneity than the other classical MANOVA

statistics. It might be tempting to consider using Pillai’s

trace routinely, or even to couple it with a permutation

algorithm for calculating P values (as is done in the

canonical analysis of principal coordinates, CAP, a

method with which the classical MANOVA statistics

have a clear kinship, see Anderson and Robinson [2003]

and Anderson and Willis [2003] for details), but Pillai’s

trace will be sensitive to differences in correlation

structure among groups, and, furthermore, it simply

cannot be calculated when there are more variables than

samples ( p . N ), nor can it be implemented on the basis

of non-Euclidean distances (such as Bray-Curtis or

Jaccard) as are commonly used in the analysis of

ecological communities.

Effects of heterogeneity for unbalanced designs

All of the tests were sensitive to heterogeneity of

dispersions for unbalanced designs. The direction of the

effects depended on the direction of heterogeneity with

respect to the differences in sample sizes. If a group with

large dispersions also had a small number of samples,

then rejection rates increased. Consider that the position

of just a few points in a group drawn from a population

that has large variation, relative to a large number of

samples in a tightly clustered group, could well fall on

one side of that cluster or the other, just by chance, even

though the two groups have the same population

centroid. In contrast, if the group with the large

dispersions also had a large number of samples, then

the tests all became quite conservative; it is very difficult

to get a small tightly clustered group to fall outside of a

large group that is widely dispersed, so differences in

centroid (even if they were there), become very difficult

to detect in such cases. These effects of heterogeneity for

unbalanced designs mirror precisely what has been

shown for univariate ANOVA: namely, conservatism

when variances are positively related to group sample

sizes and liberalism when the relationship is negative

(e.g., Welch 1937, Glass et al. 1972).

The fact that effects of heterogeneity on rejection rates

for unbalanced designs were constant for a given sample

size ratio in the case of Pillai’s trace and PERMANOVA

was interesting and warrants further study. Although

not pursued further here, it should be possible to

demonstrate this result as an asymptotic property of

these tests, especially by reference to the construction of

these test statistics. In contrast, just as in the balanced-

design case, ANOSIM and Mantel rejection rates always

increased substantially with increases in the total sample

size.

Power

PERMANOVA was more powerful than the other

tests to detect changes in community structure for the

majority of the scenarios simulated here based on real

data sets. This aligns with previous work demonstrating

greater power for canonical partitioning methods over

the Mantel test (Legendre and Fortin 2010). Further-

more, the ANOSIM test was never found to be more

powerful than the Mantel test. This occurred despite the

fact that, under simpler idealized scenarios (Sim1–

Sim4), ANOSIM rejection rates tended to be much

higher than PERMANOVA or the Mantel test. This is

likely due to the ranking of dissimilarities, intrinsic to

the ANOSIM test, which will have different conse-

quences for data sets where the underlying dissimilarities

are distributed in different ways.

For simulations of count data (Ekofisk), differences in

power were not large and the method with the greater

power depended on the distributions used for the

simulation. PERMANOVA generally had more power

to detect changes when data were simulated using

separate independent Poisson and negative binomial

distributions, whereas Mantel had more power when the

truncated MVLN distribution was used. One possible

explanation for this result is that the Mantel test is

sensitive to changes in correlation structure among

variables (see Sim3; Fig. 1d), and such differences (as

estimated from the real data) were indeed able to be

built in to the truncated MVLN simulations. PERMA-

NOVA, in contrast, is not sensitive to differences in

correlation structure (shape). A resemblance-based test

statistic that takes into account the correlation structure

among variables (such as CAP; Anderson and Robinson

2003, Anderson and Willis 2003) would also be expected

to have more power than PERMANOVA in the

presence of high correlation structures in the data

(Anderson and Robinson 2003), although this was not

examined explicitly here.

Relative power also depended on the resemblance

measure used as the basis of the analysis. Different

resemblance measures emphasize fundamentally differ-

ent aspects of the underlying multivariate data matrix

(Clarke et al. 2006). Euclidean distance is more focused

on differences in abundance per species and differences

in total abundances per sample, chi-square distance

emphasizes changes in proportional abundances, with

heavier weights being given to rarer species (Legendre

and Gallagher 2001), whereas Bray-Curtis is more

focused on compositional changes in species’ identities.

Thus, for example, greater power obtained using

Euclidean distances for a particular comparison may

simply be a consequence of the differences in (log)

abundance per species between groups being more

pronounced in those cases than either the turnover in

MARTI J. ANDERSON AND DANIEL C. I. WALSH570 Ecological Monographs
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species’ identities or the changes in proportional

abundances. These results serve to highlight that the

resemblance measure used as the basis of the analysis

should be chosen carefully by reference to the underlying

ecological questions of greatest interest to the researcher

within a given context.

Location vs. dispersion effects

Warton et al. (2012) stated that distance-based tests

(such as ANOSIM or PERMANOVA) confound

location and dispersion effects. However, as has been

clearly demonstrated here, it is not the construction of

the PERMANOVA test statistic itself that confounds

location and dispersion effects, but rather the underlying

dissimilarity measure that is used as the basis of the

analysis which may do this (see Appendix B). PERMA-

NOVA (in the case of balanced designs), as a test

statistic, will focus on differences in location only, but

this will be done in the space of the resemblance measure

chosen. Thus, careful consideration of the meaning of

the resemblance measure and what it actually measures

by reference to the wealth of information in the

underlying multivariate data set is clearly necessary.

Measures such as Jaccard or Bray-Curtis, commonly

used in ecology, do not retain the mean–variance

properties of original abundances, but they do empha-

size, instead, the similarity in composition of species’

identities among samples, which the Euclidean distance

measure does not.

In contrast to PERMANOVA, even for balanced

designs, ANOSIM and the Mantel test really do

confound location and dispersion effects in the sense

that one cannot unravel which of these types of

differences (in the space of the chosen resemblance

measure) might be driving any reported significant

results. Furthermore, their hyper-conservatism in the

face of unbalanced designs where groups with larger

sample sizes have greater dispersion suggests that they

cannot, unfortunately, be relied upon more generally as

‘‘omnibus’’ tests for differences among groups. Impor-

tantly, PERMANOVA (and Pillai’s trace) also lack the

desired level of robustness to heterogeneity for unbal-

anced designs, pointing directly to the need for new

methods to be developed that can be used to test for

differences in location even in the presence of differences

in dispersions among groups for cases where there are

unequal sample sizes.

Other methods

Several other resemblance-based test statistics de-

scribed to date will yield equivalent P values under

permutation for the one-way case to the methods

examined in detail here (see Appendix A and Warton

and Hudson 2004). Specifically, the results of simula-

tions obtained here for the Mantel test are equivalent to

what would be obtained using either d̄B/d̄W, as proposed

by Good (1982) and Smith et al. (1990), or the MRPP

statistic calculated directly on dissimilarities (Mielke et

al. 1981), provided the design is balanced and particular

weights are used in the construction of the MRPP test

statistic (see Appendix A). Similarly, the results of

simulations obtained here for PERMANOVA are

equivalent to what would be obtained using the statistics

described by Pillar and Orlóci (1996) and Gower and

Krzanowski (1999), or MRPP calculated on squared

dissimilarities (for a particular choice of weights, but for

both unbalanced and balanced designs; see Appendix

A). Note, however, that the equivalence of these

methods to PERMANOVA is only true for the one-

way ANOVA design, and does not necessarily hold

more generally for higher-way designs (e.g., Torres et al.

2010). In addition, if Euclidean distances are used as the

basis of the analysis, then the results obtained using

PERMANOVA are equivalent to what would be

obtained using either a redundancy analysis (RDA) for

an ANOVA factor by permutation (e.g., Verdonschot

and ter Braak 1994) or the geometric F test by

randomization proposed by Edgington (1995). Similar-

ly, if the analysis is based on a chi-square distance

matrix, then results obtained using PERMANOVA are

expected to mirror results obtained using canonical

correspondence analysis (CCA; ter Braak 1986, Legen-

dre and Gallagher 2001), where the environmental

predictor variables are orthogonal ANOVA codes for

a factor.

Other approaches, not investigated here, include what

might be called ‘‘stacked’’ test statistics or ‘‘variable-

based’’ statistics, such as the sum of individual F ratios

of Edgington (1995), the ‘‘LR-IND,’’ or ‘‘sum-of-LR’’

tests (Warton and Hudson 2004, Warton 2011, Warton

et al. 2012), all of which also use permutations to obtain

P values for inference. These effectively treat the

multivariate problem as a sum of individual univariate

problems. It is well known, however, that high-

dimensional information may not be manifest in the

original individual variables, so individual variable-

based approaches will reflect this limitation. We expect

that the relative power of these approaches compared to

PERMANOVA or to a MANOVA statistic like Pillai’s

trace, with P values obtained using permutations, or a

dissimilarity-based approach that takes into account

correlation structure, such as CAP, will depend heavily

on the type of scenario being examined, the relative

between- vs. within-group variation among different

variables that show some effects, the extent to which

rare species are responsible for turnover among groups,

and the degree of correlation structure among the

variables.

Future research directions

Although the present study was very broad in scope,

there are clearly many avenues requiring further

research. The initial focus here was on rejection rates

when centroids were equal, and subsequent power

comparisons were limited to examination of certain

alternative hypotheses for specific data sets and distance
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measures. Exploration of potential general principles

regarding comparative power of these methods under

different types of ecological scenarios and for a variety

of distance measures is needed. More work is also

needed to clarify the behavior of these and other tests for

different shapes of distributions in underlying variables,

such as those with extreme values or outliers, including

to better understand the properties of different distance

measures when used with variables having differently

shaped distributions. In addition, despite their some-

what similar behavior overall when compared to

PERMANOVA, ANOSIM and the Mantel test clearly

are not equivalent and their rejection rates can be very

different in size under a given scenario. Thus, identifying

situations when ranking the distances either increases or

decreases the relative power of ANOSIM compared to

the Mantel test also requires more study.

Conclusions

For balanced designs, PERMANOVA was quite

robust to heterogeneity, but ANOSIM and the Mantel

test were not. These resemblance-based tests are clearly

not testing the same null hypothesis. ANOSIM and the

Mantel test examine the more general H0: ‘‘samples in

the same group are no more tightly clustered together

than samples from different groups,’’ whereas PERMA-

NOVA focuses on the more specific H0: ‘‘there are no

differences in centroids among the groups.’’ Note that in

all cases, the ‘‘clumping of samples within groups’’ or the

‘‘differences in centroids’’ (a shift in the location of the

multivariate data cloud) are defined in the space of the

resemblance measure chosen for the analysis. As ANO-

SIM and the Mantel test are more general ‘‘omnibus’’

tests, rejection of the null hypothesis in either case will

indicate only that some feature of the groups differ to

make them distinct. This feature could be (1) locations,

(2) dispersions, (3) the particular shape (correlation

structure) of the data clouds being compared; or indeed,

some combination of these things. Although reduced-

space ordinations (such as nonmetric MDS) can assist in

interpreting the potential nature of any differences

detected, it is not possible with these tests or any

associated plots to make more specific statistical

inferences.

Although the generality of these more omnibus tests

can often be useful, in many ecological studies it may be

quite important, however, to hone inferences further.

For example, ecologists may want to distinguish—has

there been a fundamental shift in the community structure

itself (a change in location)? Or rather, has the

community structure become more (or less) variable (a

change in dispersion)? Or both? For balanced designs,

PERMANOVA can be used effectively to make

inferences about differences in centroids alone (i.e.,

shifts in the location of the multivariate cloud of sample

units in the space of the resemblance measure), while

PERMDISP can be used to make inferences about

differences in multivariate dispersions alone.

Importantly, none of the tests examined here were

robust to heterogeneity for unbalanced sampling de-

signs, being either excessively liberal or extremely

conservative under different scenarios, especially ANO-

SIM and the Mantel test, which became worse with

increasing total numbers of samples. Thus, we do not

recommend the routine use of these tests for unbalanced

designs where heterogeneity of dispersions is known to

occur, as interpreting results and drawing inferences in

such cases can be problematic. Given the common

occurrence of genuine heterogeneity in multivariate

ecological data, the development of tests for differences

in centroids that explicitly take into account heteroge-

neity of within-group dispersions is an important topic

for future research, and will certainly be necessary to

analyze unbalanced sampling designs rigorously in

multivariate tests to compare groups.
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groups. Journal of Vegetation Science 7:585–592.

R Development Core Team. 2012. R: a language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. http://www.
R-project.org

Rencher, A. C. 1998. Multivariate statistical inference and
applications. John Wiley and Sons, New York, New York,
USA.

Romano, J. P. 1990. On the behavior of randomization tests
without group invariance assumption. Journal of the
American Statistical Association 85:686–692.

Seber, G. A. F. 1984. Multivariate observations. John Wiley
and Sons, New York, New York, USA.

Smith, E. P., K. W. Pontasch, and J. Cairns. 1990. Community
similarity and the analysis of multispecies environmental
data: a unified statistical approach. Water Research 24:507–
514.

Snedecor, G. W. 1934. Calculation and interpretation of
analysis of variance and covariance. Collegiate Press, Ames,
Iowa, USA.

Stevens, J. 1979. Comment on Olson: Choosing a test statistic
in multivariate analysis of variance. Psychological Bulletin
86:355–360.

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a
new eigenvector technique for multivariate direct gradient
analysis. Ecology 67:1167–1179.

Tomarken, A. J., and R. C. Serlin. 1986. Comparison of
ANOVA alternatives under variance heterogeneity and
specific noncentrality structures. Psychological Bulletin 99:
90–99.

November 2013 573BEHAVIOR OF MULTIVARIATE TESTS

 15577015, 2013, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1890/12-2010.1 by E

pfl L
ibrary B

ibliothèque, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Torres, P. S., M. B. Quaglio, and V. D. P. Pillar. 2010.
Properties of a randomization test for multifactor compar-
isons of groups. Journal of Statistical Computation and
Simulation 80:1131–1150.

Underwood, A. J. 1981. Techniques of analysis of variance in
experimental marine biology and ecology. Oceanography and
Marine Biology: An Annual Review 19:513–605.

Underwood, A. J. 1997. Experiments in ecology: their logical
design and interpretation using analysis of variance. Cam-
bridge University Press, Cambridge, UK.

Verdonschot, P. F. M., and C. J. F. ter Braak. 1994. An
experimental manipulation of oligochaete communities in
mesocosms treated with chlorpyrifos or nutrient additions:
multivariate analyses with Monte Carlo permutation tests.
Hydrobiologia 278:251–266.

Warton, D. I. 2011. Regularized sandwich estimators for

analysis of high-dimensional data using generalised estimat-

ing equations. Biometrics 67:116–123.

Warton, D. I., and H. M. Hudson. 2004. A MANOVA statistic

is just as powerful as distance-based statistics, for multivar-

iate abundances. Ecology 85:858–874.

Warton, D. I., S. T. Wright, and Y. Wang. 2012. Distance-

based multivariate analyses confound location and dis-

persion effects. Methods in Ecology and Evolution 3:89–

101.

Welch, B. L. 1937. The significance of the difference between

two means when the population variances are unequal.

Biometrika 29:350–362.

SUPPLEMENTAL MATERIAL

Appendix A

Description of statistical tests and related methods (Ecological Archives M083-019-A1).

Appendix B

Example showing how data simulated from groups with equal centroids but different variances in Euclidean space can yield
groups with unequal centroids in Bray-Curtis space (Ecological Archives M083-019-A2).

Appendix C

Description of data sets (Ekofisk and Norwegian continental shelf ) and simulation methods used to compare the power of
statistical tests to detect real changes in multivariate ecological assemblages (Ecological Archives M083-019-A3).

Appendix D

Additional figures showing empirical power of multivariate tests for comparisons of groups based on the Ekofisk data
(Ecological Archives M083-019-A4).

Appendix E

Additional figure showing empirical power of multivariate tests for comparisons of groups based on the Norwegian continental
shelf data (Ecological Archives M083-019-A5).

Supplement 1

R code and associated source files of parameters used to conduct simulations Sim1–Sim4 (Ecological Archives M083-019-S1).

Supplement 2

R code and associated source files used to generate parameters and conduct simulations based on real ecological data sets
(Ecological Archives M083-019-S2).

Supplement 3

Full results of all simulation scenarios described in Sim1–Sim4 (Ecological Archives M083-019-S3).

Supplement 4

Full results of all simulations based on real ecological data sets (Ecological Archives M083-019-S4).
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